
sun®
microsystems

Networking on the Sun Workstation®

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

•
Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks af Sun Microsystems, Inc.

UNIX, UNIXI32V, UNIX System Ill, and UNIX System V are trademarks of AT&T Bell Laboratories.

Intel ® and Multibus® are registered trademarks of Intel Corporation.

DEC®, PDP®, VT®, and V AX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

Network Services Guide

Contents

Chapter 1 Sun's Network File System ... 3

1.1. Introduction ... 3

1.2. Computing Environments ... 4

1.3. Terms and Concepts ... 5

1.4. Comparison with Predecessors .. 5

NFS and RCP .. 6

NFS andND... 6

1.5. Examples of How it Works .. 7

Mounting a Remote Filesystem .. 7

Exporting a Filesystem .. 8

Administering a Server Machine ... 8

Chapter 2 Architecture of NFS ... 11

2.1. Design Goals .. 11

Transparent Information Access .. 11

Different Machines and Operating Systems .. 11

Easily Extensible ... 11

Easy Network Administration ... 11

Reliable ... 12

High PerfofIIlance ... 12

2.2. The NFS Implementation .. 13

2.3. The NFS Interface ... 14

Chapter 3 The Yellow Pages Database .. 19

-i-

Contents Continued

3.1. What Are The Yellow Pages? .. 1 ~

3.2. The yP Map .. 1 ~

3.3. The yP Domain .. 2(

3.4. Servers and Clients ... 2(

3.5. Masters and Slaves ... 2C

Chapter 4 Overview of the Yellow Pages .. 25

4.1. The yP Network Service ... 25

Naming ... 25

Data Storage ... 26

Servers ... 26

Clients ... 26

4.2. Default yP Files ... 26

Hosts ... 27

Passwd ... 27

Otlters ... 27

Changing your passwd ... 27

Chapter 5 Network Documentation Roadmap ... 31

-ii-

1
Sun's Network File System

Sun's Network File System .. 3

1.1. Introduction ... 3

1.2. Computing Environments ... 4

1.3. Terms and Concepts ... 5

1.4. Comparison with Predecessors .. 5

NFS and RCP .. 6

NFSandND... 6

1.5. Examples of How it Works .. 7

Mounting a Remote Filesystem .. 7

Exporting a Filesystem .. 8

Administering a Server Machine ... 8

1.1. Introduction

1
Sun's Network File System

This chapter gives an overview of Sun's network file system, which allows users
to mount directories across the network, and then to treat remote files as if they
were local. Advanced users may want to skip the first few sections, and go
straight to examples of how it works. Beginning users may not be interested in
the next chapter, which discusses network file system architecture.

The Network File System (NFS) is a facility for sharing files in a heterogeneous
environment of machines, operating systems, and networks. Sharing is accom­
plished by mounting a remote filesystem, then reading or writing files in place.
The NFS is open-ended, and Sun Microsystems encourages both customers and
vendors to interface NFS with other systems.

A distributed network of personal workstations can provide more aggregate com­
puting power than a mainframe computer, with far less variation in response time
over the course of the day. Thus, a network of personal computers is generally
more cost-effective than a central mainframe computer, particularly when con­
sidering the value of people's time. However, for large programming projects
and database applications, a mainframe has often been preferred, because all files
can be stored on a single machine.

Those who work with unconnected personal computers know the inconveniences
resulting from data fragmentation. Even in a network environment, sharing pro­
grams and data is sometimes difficult. Files either have to be copied to each
machine where they were needed, or users have to log in to the remote machine
with the required files. Network logins are time-consuming, and having multiple
copies of a file gets confusing as incompatible changes are made to separate
copies.

To solve this problem, Sun designed a distributed filesystem that permits client
systems to access shared files on a remote system. Client machines request
resources provided by other machines, called servers. A server machine makes
particular filesystems available, which client machines can mount as local
filesystems. Thus, users can access remote files as if they were on the local
machine.

The NFS was not designed by extending the UNIXt operating system onto the
network. Instead, the NFS was designed to fit into Sun's network services

t UNIX is a trademark of AT&T Bell Laboratories.

3 Revision B of 17 February 1986

4 Network Services

1.2. Computing
Environments

architecture. Thus, NFS is not a distributed operating system, but rather, an
interface to allow a variety of machines and operating systems to play the role of
client or server. Sun has opened the NFS interface to customers and other ven­
dors, in order to encourage the development of a rich set of applications working
together on a single network.

The traditional computing environment looks like this:

tenninall

Mainframe 1-----1 terminal2

terminal3

terminal4

The major problem with this environment is competition for CPU cycles. The
workstation environment solves that problem, but requires more disk drives. A
network environment looks like this:

workstation2 workstation3 workstation4

ethemet

workstationl server

printer

Sun's goal with NFS was to make all disks available as needed. Individual
workstations have access to all information residing anywhere on the network.
Printers and supercomputers may also be available somewhere on the network.

Revision B of 17 February 1986

1.3. Terms and Concepts

1.4. Comparison with
Predecessors

Chapter 1 - Sun's Network File System 5

A machine that provides resources to the network is a server, while a machine
that employs these resources is a client. A machine may be both a server and a
client. A person logged in on a client machine is a user, while a program or set
of programs that run on a client is an application. There is a distinction between
the code implementing the operations of a filesystem, (called filesystem opera­
tions), and the data making up the filesystem's structure and contents. (called
filesystem data).

A traditional UNIX filesystem is composed of directories and files, each of which
has a corresponding inode (index node), containing administrative information
about the file, such as location, size, ownership, permissions, and access times.
Inodes are assigned unique numbers within a filesystem, but a file on one
file system could have the same number as a file on another filesystem. This is a
problem in a network environment, because remote filesystems need to be
mounted dynamically, and numbering conflicts would cause havoc. To solve this
problem, Sun has designed the virtual file system (VFS), based on the vnode, a
generalized implementation of inode s that are unique across filesystems.

The Remote Procedure Call (RPC) facility provides a mechanism whereby one
process (the caller process) can have another process (the server process) exe­
cute a procedure call, as if the caller process had executed the procedure call in
its own address space (as in the local model of a procedure call). Because the
caller and the server are now two separate processes, they no longer have to live
on the same physical machine.

The RPC mechanism is implemented as a library of procedures, plus a
specification for portable data transmission, known as the eXternal Data
Representation (XDR). Both RPC and XDR are portable, providing a kind of
standard 110 library for interprocess communication Thus programmers now
have a standardized access to sockets without having to be concerned about the
low-level details of the accept () , bind () , and select () procedures.

The Yellow Pages (YP) is a network service to ease the job of administering
networked machines. The yP is a centralized read-only database. For a client on
the network file system, this means that an application's access to data served by
the yP is independent of the relative locations of the client and the server. The
yP database on the server provides password, group, network, and host informa­
tion to client machines.

The Network File System (NFS) is composed of a modified UNIX kernel, a set of
library routines, and a collection of utility commands. The NFS presents a net­
work client with a complete remote filesystem. Since NFS is largely transparent
to the user, this document tells you about things you might not otherwise notice.
Sun's NFS is an open system that can accommodate other machines on the net,
even non-UNIX systems, without compromising security.

Sun users may be familiar with two previous networking schemes, rcp and ND.
The first is a remote copy utility program that uses the networking facilities of
4.2 BSD to copy files from one machine to another. The second is a proprietary
device driver for the Sun that makes raw disk available over the network. The
NFS does not completely replace ND, so servers and clients will be running both

~~sun ~~ microsystems
Revision B of 17 February 1986

6 Network Services

NFSandRCP

NFSandND

ND and NFS.

Because machines need ND to boot, an NFS server still needs a/pub partition.
However, unlike the old ND configuration, under NFS this partition contains
only /pub/vrnunix, /pub/boot, /pub/ stand and /pub/bin. There is a
separate file system mounted on /usr containing everything else important. For
example, /usr /bin used to be a symbolic link to /pub/usr /bin; now the
server gets / usr /bin off its own disk, while a client gets it by mounting the
remote /usr file system onto the local /usr directory. This is true of / lib as
well. The other standard NFS remote mount is called /usr /maehine, where
users' home directories reside.

An exception arises when a client mounts a server's /usr filesystem on its
directory. Some files in /usr should be private, such as / usr / adm,
/usr / spool, /usr /tmp, among others. To get around the problem, these
private files are symbolic links to /pri vate/usr. In an ND configuration, a
few files in /usr / lib, such as erontab, aliases, and sendmail. ef
were private; these files are now symbolic links to /pri vate/usr / lib.

The remote copy utility (rep) allows data transfer only in units of files. The
client of rep supplies the path name of a file on a remote machine, and receives
a stream of bytes in return. Access control is based on the client's login name
and host name.

The major problem is that rep is not transparent to the user, who winds up with
a redundant copy of the desired file. The NFS, by contrast, is transparent - only
one copy of the file is necessary. Another problem is that rep does nothing but
copy files. In a sense, there needs to be one remote command for every regular
command: for example, rdif f to perform differential file comparisons across
machines. By providing entire file systems, NFS makes this unnecessary.

Sun's Network Disk (ND) is a device driver that makes a raw disk available
using a simple protocol. The ND client builds its own filesystem, given the disk.
Disk space on the server machine is partitioned, and diskless client machines
mount one partition as their root file system, and another as their /usr filesys­
tem. Symbolic links can be made between this pseudo-filesystem and files on the
server machine.

Under ND, access control of disk areas is based solely on the requester's Internet
Protocol (lP) address. Since IP addresses are assumed to be unique, this does not
permit file sharing by the ND server. The NFS, on the other hand, allows file
sharing. The use of the IP address as the basis of access control has two other
drawbacks: first, an erroneous or malicious piece of network software can easily
corrupt a user's disk just by supplying an IP address; and second, it violates pro­
tocol layering concepts and makes it difficult to change a client's IP address or
ND server. Since the server emulates only a disk and not a filesystem, there can
be no cacheing on the server side. The NFS permits cacheing, with concomitant
performance improvements.

~\sun ,~ microsystems
Revision B of 17 February 1986

1.5. Examples of How it
Works

Mounting a Remote
Filesystem

Chapter 1-Sun's Network File System 7

This section gives three examples of how to use the NFS.

Suppose that you want to read some on-line manual pages. These pages are not
available on the server machine, called server, but are available on a machine
called docserv. Mount the directory containing the manuals as follows:

client. lete/mount doeserv:/usr/man lusr/man

Note that you have to be superuser in order to do this. Now you can use the man
command whenever you want. Try running the df command after you've
mounted the remote filesystem. Its output will look something like this:

Filesystem kbytes used avail capacity Mounted on
/dev/ndO 4775 2765 1532 64% /
/dev/ndpO 5695 3666 1459 72% /pub
server:/lib 7295 4137 2428 63% /lib
server:/usr 39315 31451 3932 89% /usr
server:/usr/server 326215 245993 47600 84% /usr2
docserv:/usr/man 346111 216894 94605 70% /usr/rnan

You can remote mount not only filesystems, but also directory hierarchies inside
filesystems. In this example, / u s r / man is not a real mount point - it is a sub­
directory of the / usr filesystem. Here is a diagram of the three machines
involved here. Ellipses represent machines, boxes represent remote filesystems,
and dotted boxes represent ND partitions.

llib lusr lusr2 llib lusr

/usr/bin lusr/mal

lib

Revision B of 17 February 1986

8 Network Services

Exporting a Filesystem

Administering a Server
Machine

Suppose that you and a colleague need to work together on a programming pro­
ject. The source code is on your machine, in the directory /usr/proj. It does
not matter whether your workstation is a diskless node, or has local disk. Sup­
pose that after creating the proper directory, your colleague tried to remote
mount your directory. Unless you have explicitly exported the directory, your
colleague's remote mount will fail with a "permission denied" message.

To export a directory, become superuser, and edit the file / etc/ exports. If
your colleague is on a machine named cohort, then you need to put this one
line in / etc/ export s:

/usr/proj cohort

Without the keyword cohort, anybody on the network could remote mount
your directory / us r / pro j. The NFS mount request server mount d(8c) will
read the / etc/ exports file if necessary whenever it receives a request for a
remote mount. Now your colleague can remote mount the source directory by
issuing this command:

cohortt /etc/mount client:/usr/proj /usr/proj

Since both you and your colleague will be able to change files on / us r / pro j ,
it would be best to use the sec s (1) source code control system for concurrency
control.

System administrators must know how to set up the NFS server machine so that
client workstations can mount all the necessary filesystems. You export filesys­
terns (that is, make them available) by placing appropriate lines in the
/ etc/ exports file. Here is a sample / etc/ exports file for a typical
server machine:

/
/usr
/usr2
/usr/src staff

The pathnames specified in /etc/exports must be real filesystems -that is,
directory mount points for disk devices. The root filesystem must be exported so
that / lib is available to NFS clients. A netgroup, such as staff, may be
specified after the filesystem, in which case remote mounts are limited to
machines that are a member of this netgroup. At anyone time, the system
administrator can see which filesystems have been remote mounted, by executing
the showmount(8) command.

Revision B of 17 February 1986

Architecture of NFS

f\rchitecture of NFS .. .

2.1. Design Goals

Transparent Information Access

Different Machines and Operating Systems

Easily Extensible .. .

Easy Network Administration .. .

Reliable .. .

H·ghP rl 1 e onn.ance .. .

2.2. The NFS Implementation

2.3. The NFS Interface .. .

2

11

11

11

11

11

11

12

12

13

14

2.1. Design Goals

Transparent Information
Access

Different Machines and
Operating Systems

Easily Extensible

Easy Network Administration

2
Architecture of NFS

This chapter discusses the design and implementation of the NFS.

Users are able to get directly to the files they want without knowing the network
address of the data. To the user, all universes look alike: there seems to be no
difference between reading or writing a file contained on a private disk, and read­
ing or writing a file on a disk in the next building. Information on the network is
truly distributed.

No single vendor can supply tools for all the work that needs to get done, so
appropriate services must be integrated on a network. In keeping with its policy
of supplying open systems, Sun is promoting the NFS as a standard for the
exchange of data between different machines and operating systems.

A distributed system must have an architecture that allows integration of new
software technologies without disturbing the extant software environment. To
allow this, the NFS provides network services, rather than a new network operat­
ing system. That is, the NFS does not depend on extending the underlying
operating system onto the network, but instead offers a set of protocols for data
exchange. These protocols can be easily extended.

The administration of large networks can be complicated and time-consuming.
Sun wishes to make sure that a set of network filesystems is no more difficult to
administer than a set of local file systems on a timesharing system. UNIX has a
convenient set of maintenance commands developed over the years. Some new
utilities are provided for network administration, but most of the old utilities
have been retained.

The Yellow Pages (YP) facility is the first example of a network service made
possible with NFS. By storing password information and host addresses in a cen­
tralized database, the yellow pages ease the task of network administration. An
overview of the yP facility is presented in the Network Services Guide.

The most obvious use of the yP is for administration of / etc/pas swd. Since
the NFS uses a UNIX protection scheme across the network, it is advantageous to
have a common / etc/passwd database for all machines on the network. The
yP allows a single point of administration, and gives all machines access to a
recent version of the data, whether or not it is held locally. To install the yP ver­
sion of / etc/passwd, existing applications were not changed; they were

11 Revision B of 17 February 1986

12 Network: Services

Reliable

High Performance

simply relinked with library routines that know about the yP service. Conven­
tions have been added to library routines that access / etc/passwd to allow
each client to administer its own local subset of / etc/passwd; the local subset
modifies the client's view of the system version. Thus, a client is not forced to
completely bypass the system administrator in order to accomplish a small
amount of personalization.

The yP interface is implemented using RPC and XDR, so the service is available
to non-UNIX operating systems and non-Sun machines. yP servers do not inter­
pret data, so it is possible for new databases to take advantage of the yP service
without modifying the servers.

Reliability of the UNIX-based filesystem derives primarily from the robustness of
the 4.2BSD filesystem. In addition, the file server protocol is designed so that
client workstations can continue to operate even when the server crashes and
reboots. This property is shared with the current ND protocol, and has proven to
be quite desirable. Sun achieves continuation after reboot without making
assumptions about the fail-stop nature of the underlying server hardware.

The major advantage of a stateless server is robustness in the face of client,
server, or network failures. Should a client fail, it is not necessary for a server
(or human administrator) to take any action to continue normal operation.
Should a server or the network fail, it is only necessary that clients continue to
attempt to complete NFS operations until the server or network gets fixed. This
robustness is especially important in a complex network of heterogeneous sys­
tems, many of which are not under the control of a disciplined operations staff,
and which may be running untested systems often rebooted without warning.

The flexibility of the NFS allows configuration for a variety of cost and perfor­
mance trade-offs. For example, configuring servers with large, high-performance
disks, and clients with no disks, may yield better performance at lower cost than
having many machines with small, inexpensive disks. Furthermore, it is possible
to distribute the filesystem data across many servers and get the added benefit of
multiprocessing without losing transparency. In the case of read-only files,
copies can be kept on several servers to avoid bottlenecks.

Sun has also added several performance enhancements to the NFS, such as "fast
paths" to eliminate the work done for high-runner operations, asynchronous ser­
vice of multiple requests, cacheing of disk blocks, and asynchronous read-ahead
and write-behind. The fact that cacheing and read-ahead occur on both client and
server effectively increases the cache size and read-ahead distance. Cacheing
and read-ahead do not add state to the server; nothing (except performance) is
lost if cached information is thrown away. In the case of write-behind, both the
client and server attempt to flush critical information to disk whenever necessary,
to reduce the impact of an unanticipated failure; clients do not free write-behind
blocks until the server verifies that the data is written.

Our performance goal was to achieve the same throughput as a previous release
of the system that used the network only as a disk (and thus did not permit shar­
ing). This goal has been achieved.

Revision B of 17 February 198t

2.2. The NFS Implementation

other
VFS

Chapter 2 - Architecture of NFS 13

In the Sun implementation of the NFS, there are three entities to be considered:
the operating system interface, the virtual file system (VFS) interface, and the
network file system (NFS) interface. The UNIX operating system interface has
been preserved in the Sun implementation of the NFS, thereby insuring compati­
bility for existing applications.

Vnodes are a re-implementation of inodes that cleanly separate filesystem
operations from the semantics of their implementation. Above the VFS inter­
face, the operating system deals in vnode s; below this interface, the filesystem
mayor may not implement inodes. The VFS interface can connect the operat­
ing system to a variety of file systems (for example, 4.2 BSD or MS-DOS). A
local VFS connects to filesystem data on a local device.

The remote VFS defines and implements the NFS interface, using the remote
procedure call (RPC) mechanism. RPC allows communication with remote ser­
vices in a manner similar to the procedure calling mechanism available in many
programming languages. The RPC protocols are described using the external
data representation (XDR) package. XDR pennits a machine-independent
representation and definition of high-level protocols on the network.

The figure below shows the flow of a request from a client (at the top left) to a
collection of filesystems.

sys calls

vnode

VFS
remote

VFS

RPC/
XDR

ethemet

NFS
server

RPC/
XDR

vnode

4.2BSD
VFS

In the case of access through a local VFS, requests are directed to filesystem data
on devices connected to the client machine. In the case of access through a
remote VFS, the request is passed through the RPC and XDR layers onto the net.
In the current implementation, Sun uses the UDP/IP protocols and the Ethernet.
On the server side, requests are passed through the RPC and XDR layers to an
NFS server; the server uses vnodes to access one of its local VFSs and service

Revision B of 17 February 1986

14 Network Services

2.3. The NFS Interface

the request. This path is retraced to return results.

Sun's implementation of the NFS provides five types of transparency:

1. Filesystem Type: The vnode, in conjunction with one or more local VFSs
(and possibly remote VFSs) pennits an operating system (hence client and
application) to interface transparently to a variety of filesystem types.

2. Filesystem Location: Since there is no differentiation between a local and a
remote VFS, the location of filesystem data is transparent.

3. Operating System Type: The RPC mechanism allows interconnection of a
variety of operating systems on the network, and makes the operating system
type of a remote server transparent.

4. Machine Type: The XDR definition facility allows a variety of machines to
communicate on the network and makes the machine type of a remote server
transparent.

5. Network Type: RPC and XDR can be implemented for a variety of network
and internet protocols, thereby making the network type-transparent.

Simpler NFS implementations are possible at the expense of some advantages of
the Sun version. In particular, a client (or server) may be added to the network
by implementing one side of the NFS interface. An advantage of the Sun imple­
mentation is that the client and server sides are identical; thus, it is possible for
any machine to be client, server or both. Users at client machines with disks can
arrange to share over the NFS without having to appeal to a system administra­
tor, or configure a different system on their workstation.

As mentioned in the preceding section, a major advantage of the NFS is the abil­
ity to mix filesystems. In keeping with this, Sun encourages other vendors to
develop products to interface with Sun network services. RPC and XDR have
been placed in the public domain, and serve as a standard for anyone wishing to
develop applications for the network. Furthennore, the NFS interface itself is
open and can be used by anyone wishing to implement an NFS client or server
for the network.

The NFS interface defines traditional file system operations for reading direc­
tories, creating and destroying files, reading and writing files, and reading and
setting file attributes. The interface is designed so that file operations address
files with an uninterpreted identifier, starting byte address, and length in bytes.

Commands are provided for NFS servers to initiate service (mountd), and to
serve a portion of their file system to the network (/ et c / export s). Many
commands are provided for constructing the yP database facility. A client builds
its view of the filesystems available on the network with the mount command.

The NFS interface is defined so that a server can be stateless. This means that a
server does not have to remember from one transaction to the next anything
about its clients, transactions completed or files operated on. For example, there
is no open operation, as this would imply state in the server; of course, the
UNIX interface uses an open operation, but the information in the UNIX opera­
tion is remembered by the client for use in later NFS operations.

~~ slIn ~~ microsystems
Revision B of 17 February 1986

Chapter 2 - Architecture of NFS 15

An interesting problem occurs when a UNIX application unlinks an open file.
This is done to achieve the effect of a temporary file that is automatically
removed when the application terminates. If the file in question is served by the
NFS, the unlink will remove the file, since the server does not remember that
the file is open. Thus, subsequent operations on the file will fail. In order to
avoid state on the server, the client operating system detects the situation,
renames the file rather than unlinking it, and unlinks the file when the applica­
tion terminates. In certain failure cases, this leaves unwanted '~temporary" files
on the server; these files are removed as a part of periodic filesystem mainte­
nance.

Another example of how the NFS provides a friendly interface to UNIX without
introducing state is the mount command. A UNIX client of the NFS "builds"
its view of the filesystem on its local devices using the mount command; thus, it
is natural for the UNIX client to initiate its contact with the NFS and build its
view of the filesystem on the network with an extended mount command. This
mount command does not imply state in the server, since it only acquires infor­
mation for the client to establish contact with a server. The mount command
may be issued at any time, but is typically executed as a part of client initializa­
tion. The corresponding umount command is only an informative message to
the server, but it does change state in the client by modifying its view of the
file system on the network.

The major advantage of a stateless server is robustness in the face of client,
server or network failures. Should a client fail, it is not necessary for a server (or
human administrator) to take any action to continue normal operation. Should a
server or the network fail, it is only necessary that clients continue to attempt to
complete NFS operations until the server or network is fixed. This robustness is
especially important in a complex network of heterogeneous systems, many of
which are not under the control of a disciplined operations staff and may be run­
ning untested systems and/or may be rebooted without warning.

An NFS server can be a client of another NFS server. However, a server will not
act as an intermediary between a client and another server. Instead, a client may
ask what remote mounts the server has and then attempt to make similar remote
mounts. The decision to disallow intermediary servers is based on several fac­
tors. First, the existence of an intermediary will impact the performance charac­
teristics of the system; the potential performance implications are so complex
that it seems best to require direct communication between a client and server.
Second, the existence of an intermediary complicates access control; it is much
simpler to require a client and server to establish direct agreements for service.
Finally, disallowing intermediaries prevents cycles in the service arrangements;
Sun prefers this to detection or avoidance schemes.

The NFS currently implements UNIX file protection by making use of the authen­
tication mechanisms built into RPC. This retains transparency for clients and
applications that make use of UNIX file protection. Although the RPC definition
allows other authentication schemes, their use may have adverse effects on tran­
sparency .

• \sun ~~ microsystems
Revision B of 17 February 1986

16 Network Services

Although the NFS is UNIX-friendly, it does not support all UNIX filesystem
operations. For example, the "special file" abstraction of devices is not sup­
ported for remote filesystems because it is felt that the interface to devices would
greatly complicate the NFS interface; instead, devices are implemented in a local
/ dev VFS. Other incompatibilities are due to the fact that NFS servers are
stateless. For example, file locking and guaranteed APPEND_MODE are not
supported in the remote case.

Our decision to omit certain features from the NFS is motivated by a desire to
preserve the stateless implementation of selVers and to define a simple, general
interface to be implemented and used by a wide variety of customers. The avai­
lability of open RPC and NFS interfaces means that customers and users who
need stateful or complex features can implement them "beside" or "within" the
NFS. Sun is considering implementation of a set of tools for use by applications
that need file or record locking, replicated data, or other features implying state
and/or distributed synchronization; however, these will not be made part of the
base NFS definition.

~~sun ~~ microsystems
Revision B of 17 February 198t

3
The Yellow Pages Database

The Yellow Pages Database ... 19

3.1. "What Are The Yellow Pages? .. 19

3.2. The yP Map .. 19

3.3. The yP Domain .. 20

3.4. Servers and Clients ... 20

3.5. Masters and Slaves ... 20

3.1. What Are The Yellow
Pages?

3.2. The YP Map

3
The Yellow Pages Database

This chapter explains Sun's network database mechanism, called the yellow
pages. Although this material is not intended for system administrators, it is
heavily slanted in that direction.

Sun provides several network services, such as the Network File System (NFS),
discussed in previous chapters. The yellow pages are another network service
offered for the first time on the 2.0 release. They permit password information
and host addresses for an entire network to be held in a single database. This
greatly eases the task of system and network administration. Sun will provide
more network services in the future.

The yellow pages (YP) constitute a distributed network lookup service:

o yP is a lookup service: it maintains a set of databases for querying. Pro­
grams can ask for the value associated with a particular key, or all the keys,
in a database.

o yP is a network service: programs need not know the location of data, or
how it is stored. Instead, they use a network protocol to communicate with a
database server that knows those details.

o yP is distributed: databases are fully replicated on several machines, known
as yP servers. Servers propagate updated databases among themselves,
ensuring consistency. At steady state, it doesn't matter which server
answers a request; the answer is the same everywhere.

The yellow pages serve information stored in yP maps. Each map contains a set
of keys and associated values. For example, the hosts map contains (as keys)
all host names on a network, and (as values) the corresponding Internet
addresses. Each yP map has a map name , used by programs to access data in the
map. Programs must know the format of the data in the map. Currently, most
maps are derived from ASCII files formerly found in / etc: passwd, group,
hosts, networks, and others. The format of data in the yP map is in most
cases identical to the format of the ASCII file. Maps are implemented by dbm(3)
files located in subdirectories of / et c / yp on yP server machines.

19 Revision B of 17 February 1986

20 Network Services

3.3. The YP Domain

3.4. Servers and Clients

3.5. Masters and Slaves

A yP domain is a named set of yP maps. You can determine your yP domain
by executing the domainname(1) command. Note that yP domains are dif­
ferent from both Internet domains and sendmail domains. A yP domain is
simply a directory in / et c / yp containing a set of maps.

A domain name is required for retrieving data from a yP database. For instance,
if your yP domain is s un and you want to find the Internet address of host
dbserver, you must ask yP for the value associated with the key dbserver
in the map hosts. byname within the yP domain sun. Each machine on the
network belongs to a default domain, set in /etc/rc .local at boot time with
the domainname(8) command.

A yP server holds all the maps of a yP domain in a subdirectory of / et c / yp,
named after the domain. In the example above, maps for the sun domain would
be held in / et c / yp / sun. This information is used internally by the YP.

Servers provide resources, while clients consume them. A server or a client is
not necessarily the same thing as a machine. To illustrate, let's consider three
different services: ND (network disk), the NFS (network file system), and the YP.

ND ND is a method of providing virtual disk, used by diskless nodes. With
ND, it makes sense to speak of server and client machines, since both pro­
vider and consumer are coterminous with machines. Furthermore, the
server and client are always the same.

NFS The NFS allows client machines to mount remote filesystems and access
files in place, provided a server machine has exported the filesystem.
However, a server that exports filesystems may also mount remote filesys­
terns exported by other machines, thus becoming a client. So a given
machine may be both server and client, or client only, or server only.
Furthermore, NFS servers and clients need not coincide with ND servers
and clients.

yP The yP server, by contrast, is a process rather than a machine, running on
a machine that may be neither ND server nor NFS server. A process can
request information out of the YP database, obviating the need to have
such information on every machine. All processes that make use of yP

services are yP clients. Sometimes clients are served by yP servers on the
same machine, but other times by yP servers running on another machine.
If a remote machine running a yP server process crashes, client processes
can obtain yP services from another machine. This is so that yP services
are almost always available.

yP servers are either master or slave. For any map, one yP server is designated
the master, and all changes to the map should be made on that machine. The
changes propagate from master to slaves. A newly built map is timestamped
internally when makedbm creates it. If you build a yP map on a slave server,
you will break the yP update algorithm (temporarily), and you will have to get
all versions in synch manually. Moral: after you decide which server is the mas­
ter, do all database updates and builds there, not on slaves.

Revision B of 17 February 1986

Chapter 3 - The Yellow Pages Database 21

It is possible for different maps to have different servers as master. A given
server may even be master with regard to one map, and slave with regard to
another. This can get confusing quickly. It is recommended that a single server
be master for all maps created by ypini t in a single domain. This document
assumes the simple case, in which one server is the master for all maps in a data­
base.

Revision B of 17 February 1986

Overview of the Yellow Pages

Overview of the Yellow Pages .. .

4.1. The yP Network Service

Naming .. .

Data Storage .. .

Servers

Clients

4.2. Default YP Files

Hosts

Passwd

Otllers .. .

Changing your passwd

4

25

25

25

26

26

26

26

27

27

27

27

~.1. The YP Network Service
~aming

4

Overview of the Yellow Pages

In releases before 2.0, each machine on the network had its own copy of
/ etc/hosts, a file containing the Internet address of each machine on the net­
work. Every time a machine was added to the network, each / etc/hosts file
had to be updated.

The yP is a network service containing network-wide databases such as
/ et c /ho s t s. There are servers spread throughout the network containing
copies of the databases. When an arbitrary machine on the network wants to
look up something in / etc/hosts, it makes an RPC call to one of the servers
to get the information. One server is the master - the only one whose database
may be modified. The other servers are slaves, and they are periodically updated
so that their information is in synch with that of the master.

The yP can serve up any number of databases. Normally that will include files
that previously lived in / etc, such as / etc/hosts and / etc/ networks.
However, users can add their own databases to the YP.

The yP itself simply serves up information, and has no idea what it means. Thus
there are two parts of yP we need to consider. how it operates, and what files
formerly in / etc now live in the YP. This has serious ramifications for users.

Imagine a company with two different networks, each of which has its own
separate list of hosts and passwords. Within each network, user names, numeri­
cal user IDs, and host names are unique. However, there is duplication between
the two networks. If these two networks are ever connected, chaos could result.
The host name, returned by the hostname(l) command and the gethost­
name(2) system call, may no longer uniquely identify a machine. Thus a new
command and system call, domainname(l) and getdomainname (2) have
been added. In the example above, each of the two networks could be given a
different domain name. However, it is always simpler to use a single domain
whenever possible.

The relevance of domains to yP is that data is stored in / et c / yp / domainname.
In particular, a machine can contain data for several different domains.

25 Revision B of 17 February 1986

26 Network Services

Data Storage

Servers

Clients

4.2. Default YP Files

The data is stored in dbm(3) format Thus the database hosts .byname for the
domain sun is stored as /etc/yp/sun/hosts .byname .pag and
/ etc/yp/ sun/hosts. byname. dire The command makedbm(8) takes an
ASCII file such as / etc/hosts and converts it into a dbm file suitable for use
by the YP. However, system administrators normally use the makefile in
/ et c / yp to create new dbm files (read on for details). This makefile in tum
calls makedbm.

To become a server, a machine must contain the yP databases, and must also be
running the yP daemon ypserv. The ypinit(8) command invokes this dae­
mon automatically. It also takes a flag saying whether you are creating a master
or a slave. When updating the master copy of a database, you can force the
change to be propagated to all the slaves with the yppush(8) command. This
pushes the information out to all the slaves. Conversely, from a slave, the
ypxfr(8) command gets the latest information from the master. The makefile it
/ etc/yp first executes makedbm to make a new database, and then calls
yppu s h to propagate the change throughout the network.

Remember that a client machine (which is not a server) does not access local
copies of / et c files, but rather makes an RPC call to a yP server each time it
needs information from a yP database. The ypbind(8) daemon remembers the
name of a server. When a client boots, ypbind broadcasts asking for the name
of the yP server. Similarly, ypbind broadcasts asking for the name of a new
yP server if the old server crashes. The ypwhich(l) command gives the name
of the server that ypbind currently points at.

Since client machines no longer have entire copies of files in the YP, two new
commands ypcat(l) and ypmatch(l) have been provided. The command
ypcat hosts is equivalent to cat / etc/hosts in a pre-2.0 system; as you
might guess, ypcat passwd is equivalent to cat /etc/passwd. To look
for someone' s password entry, searching through the password file no longer
suffices; you have to issue one of the following commands

% ypcat passwd I grep username
% ypmatch username passwd

where you replace username with the login name you're searching for.

By default, Sun workstations have seven files from / etc in the YP:
/etc/passwd,/etc/group,/etc/hosts,/etc/networks,
/etc/services, /etc/protocols, and /etc/ethers. Inaddition,
there is a new file netgroup, which many sites ought to create and put in the
yP database.

Library routines such as getpwent(3), getgrent(3), and gethostent(3)
have been rewritten to take advantage of the YP. Thus, C programs that call
these library routines will have to be relinked in order to function correctly.

~\sun ~ microsystems
Revision B of 17 February 198

fIosts

Passwd

Others

Changing your passwd

Chapter 4 - Overview of the Yellow Pages 27

The hosts file is stored as two different files in the YP. The first,
hosts .byname, is indexed by hostname. The second, hosts .byaddr, is
indexed by Internet address. Remember that this actually expands into four files,
with suffixes . pag, and . dir. When a user program calls the library routine
gethostbyname(3), a single RPC call to a server retrieves the entry from the
hosts. byname file. Similarly, gethostbyaddr(3) retrieves the entry from
the hosts. byaddr file. Of course if the yP is not running (which is caused by
commenting ypbind out of the /ete/re file), then gethostbyname will
read the jete/hosts files,just as it always has.

Maps sometimes have nicknames. Although the ypeat command is a general
yP database print program, it knows about the standard files in the YP. Thus
ypeat hosts is translated into ypeat hosts. byaddr, since there is no
file called hosts in the YP. The command ypeat -x furnishes a list of
expanded nicknames.

Normally, the hosts file for the yP will be the same as the / etc/host s file on
the machine serving as a yP master. In this case, the makefile in / et e / yp will
check to see if / etc/hosts is newer than the dbm file. Ifit is, it will use a
simple sed script to recreate hosts .byname and hosts .byaddr, run them
through makedbm and then call yppush See ypmake(8) for details.

The passwd file is similar to the hosts file. It exists as two separate files,
passwd.byname and passwd.byuid. The ypeat program prints it, and
ypmake updates it. However, if getpwent always went directly to the yP as
does gethostent, then everyone would be forced to have an identical pass­
word file. Consequently, getpwent reads the local /etc/passwd file,just as
it always did. But now it interprets "+" entries in the password file to mean,
interpolate entries from the YP database. If you wrote a simple program using
getpwent to print out all the entries from your password file, it would print out
a virtual password file: rather than printing out + signs, it would print out what­
ever entries the local password file included from the yP database.

Of the other five files in / etc, / etc/ group is treated like / etc/passwd, in
that getgrent () will only consult the yP if explicitly told to do so by the
jete/group file. The files Jete/networks, / ete/ services,
Jete/protocols, Jete/ethers, and /etc/netgroup are treated like
jete/hosts: for these files, the library routines go directly to the YP, without
consulting the local files.

To change data in the YP, the system administrator must log into the master
machine, and edit databases there; ypwhieh tells where the master server is.
However, since changing a password is so commonly done, the yppasswd(l)
command has been provided to change your yP password. It has the same user
interface as the passwd(l) command. This command will only work if the
yppa s s wdd(8c) server has been started up on the yP master server machine.

~\sun ~ microsystems
Revision B of 17 February 1986

5
Network Documentation Roadmap

Network Documentation Roadmap .. 31

5
Network Documentation Roadmap

This document Network Services Guide is intended for users who have a general
interest in network services. It explains the network file system and the yellow
pages facilities in some detail. Although it is not a manual for system adminis­
trators, the material is heavily slanted in that direction.

The document Remote Procedure Call Programming Guide is intended for pro­
grammers who wish to write network applications using remote procedure calls,
thus avoiding low-level system primitives based on sockets. Readers must be
familiar with the C programming language, and should have a working
knowledge of network theory.

The document External Data Representation Protocol Specification is intended
for programmers writing complicated applications using remote procedure calls,
who need to pass complicated data across the network. It is also a reference
guide for system programmers implementing Sun's Network File System on new
machines.

The document Remote Procedure Call Protocol Specification is a reference
guide for system programmers implementing Sun's Network File System on new
machines. It is of little interest to programmers writing network applications.

The document Network File System Protocol Specification is a reference guide
for system programmers implementing Sun's Network File System on new
machines. It is of little interest to programmers writing network applications.

The document Yellow Pages Protocol Specification is a reference guide for sys­
tem programmers implementing a Yellow Pages database facility on new
machines. It is of little interest to programmers writing network applications.

The document Inter-Process Communications Primer, taken from Berkeley's 4.2
release, is for system programmers who need to use low-level networking primi­
tives based on sockets. Since remote procedure calls are easier to use than sock­
ets, this primer is of little interest to most network programmers.

The document Network Implementation describes the low-level networking
primitives in the 4.2 UNIX kernel. It is of interest primarily to system program­
mers and aspiring UNIX gurus .

• \sun ,~ microsystems
31 Revision B of 17 February 1986

Index

A
administering a server, 8
administering the network, 11
application,S
architecture of NFS, 11
authentication, 15

C
caller process,S
changing passwords, 27
client machine,S
clients and servers, 20
computing environments, 4

D
dbm, 19,26
df (disk free), 7
domainname, 20, 25

E
/ete/ethers,26
/ete/exports,8
/ete/group,26
/ete/hosts,26,27
/ete/mount,7
/ete/netgroup,26
/ete/networks,26
/ ete/passwd, 11,26,27
/ete/protoeols,26
/ete/serviees,26
exporting a filesystem, 8
exports, 8
extensible design, 11
External Data Representation,S

F
filesystem data, 5
filesystem exportation, 8
filesystem operations,S

G
getdomainname () , 25
getgrent () , 26
gethostbyaddr (), 27

-33-

gethostbyname(),27
gethostent () , 26
getho stname () , 25
getpwent (), 26

H
heterogeneity of machines, 11
hostname,25

I
inode,5

M
makedbm, 26
map, 19
master and slave, 20
mount, 7
mounting a remote filesystem, 7

N
NO,S
network administration, 11
Network Disk, 5
Network File System, 3
NFS,3

p
passwd, 11,27
password file, 11
passwords changing, 27
performance, 12

R
rep,S
reliability, 12
remote copy program, 5
remote mounting, 7
Remote Procedure Call,S
RPC,5

S
server administration, 8
server machine, 5
server process,S

Index Continued

servers and clients, 20
slave and master, 20
statelessness of NFS, 14

T
transparency of NFS, II, 14

u
user, 5

v
VFS,13
virtual file system, 13
inode,5

x
XDR,5

y
Yellow Pages, 5, 19
YP,5

clients, 26
data storage, 26
domain, 20
explained, 19
map, 19
naming, 25
servers, 26

ypbind, 26
ypcat,26
ypinit,26
ypmake,27
yppa sswd, 27
yppa s swdd, 27
yppush,26
ypwhich,26
ypxfr,26

-34-

Remote Procedure Call
Programming Guide

Contents

Chapter 1 Introduction .. 3

1.1. Layers ofRPC ... 3

1.2. The RJ>C Paradigm ... 4

Chapter 2 Higher Layers of RPC .. 7

2.1. Highest Layer ... 7

2.2. IntenIlediate Layer .. 9

2.3. Assigning Program Numbers .. 11

2.4. Passing Arbitrary Data Types ... 11

Chapter 3 Lowest Layer of RPC ... 17

3.1. More on me Server Side .. 17

3.2. Memory Allocation with XDR .. 20

3.3. The Calling Side .. 21

Chapter 4 Other RPC Features ... 27

4.1. Select on the Server Side ... 27

4.2. Broadcast RJ>C .. 28

Broadcast R:PC Synopsis .. 28

4.3. Batching .. 29

4.4. Autl1entication ... 32

The Client Side .. 32

The Server Side .. 33

4.5. Using Inetd .. 35

-i-

Contents Continued

Chapter 5 More Examples ... 39

5.1. Versions .. 39

5.2. TCP .. 40

5.3. Callback Procedures ... 43

Appendix A Synopsis of RPC Routines ... 49

-ii-

1
Introduction

Introduction ... 3

1.1. Layers ofRPC ... 3

1.2. The RPC Paradigm ... 4

1.1. Layers of RPC

1
Introduction

This document is intended for programmers who wish to write network applica­
tions using remote procedure calls (explained below), thus avoiding low-level
system primitives based on sockets. The reader must be familiar with the C pro­
gramming language, and should have a working knowledge of network theory.

Programs that communicate over a network need a paradigm for communication.
A low-level mechanism might send a signal on the arrival of incoming packets,
causing a network signal handler to execute. A high-level mechanism would be
the Ada rendezvous. The method used at Sun is the Remote Procedure Call
(RPC) paradigm, in which a client communicates with a server. In this process,
the client first calls a procedure to send a data packet to the server. When the
packet arrives, the server calls a dispatch routine, performs whatever service is
requested, sends back the reply, and the procedure call returns to the client.

The RPC interface is divided into three layers. The highest layer is totally tran­
sparent to the programmer. To illustrate, at this level a program can contain a
call to rnusers (), which returns the number of users on a remote machine.
You don't have to be aware that RPC is being used, since you simply make the
call in a program,just as you would call malloc ().

At the middle layer, the routines registerrpc () and callrpc () are used
to make RPC calls: registerrpc () obtains a unique system-wide number,
while callrpc () executes a remote procedure call. The rnusers () call is
implemented using these two routines. The middle-layer routines are designed
for most common applications, and shield the user from knowing about sockets.

The lowest layer is for more sophisticated applications, such as altering the
defaults of the routines. At this layer, you can explicitly manipulate sockets that
transmit RPC messages. This level should be avoided if possible.

Section 2 of this manual illustrates use of the highest two layers while Section 3
presents the low-level interface. Section 4 of the manual discusses miscellaneous
topics. The final section summarizes all the entry points into the RPC system.

Although this document only discusses the interface to C, remote procedure calls
can be made from any language. Even though this document discusses RPC
when it is used to communicate between processes on different machines, it
works just as well for communication between different processes on the same
machine .

• \sun ~~ microsystems
3 Revision B of 17 February 1986

4 RPC Programming

1.2. The RPC Paradigm

Machine A

client
program

program
continues

Here is a diagram of the RPC paradigm:

, , , ,
service,

daemon: , ,
~ callrpc () ,

function
~

execute
request

~

, , , ,
I , , , ,

request
completed

return ...
reply , , , , , , , ,

~

*

call
service

return ...
answer

Machin

,

eB

service
executes

Figure 1-1 Network Communication with the Remote Procedure Call

~\Slln ~~ microsystems
Revision B of 17 February 1986

2
Higher Layers of RPC

Higher Layers of RPC ... 7

2.1. Highest Layer ... 7

2.2. Intennediate Layer .. 9

2.3. Assigning Program Numbers .. 11

2.4. Passing Arbitrary Data Types ... 11

2.1. Highest Layer

2
Higher Layers of RPC

Imagine you're writing a program that needs to know how many users are logged
into a remote machine. You can do this by calling the library routine
rnusers () , as illustrated below:

iinclude <stdio.h>

main (argc, argv)
int argc;
char **argv;

unsigned num;

if (argc < 2)
fprintf(stderr, "usage: rnusers hostname\n");
exit(l);

if «num = rnusers(argv[l]» < 0) {
fprintf(stderr, "error: rnusers\n");
exit(-l);

printf("%d users on %s\n", num, argv[l]);
exit(O);

RPC library routines such as rnusers () are in the RPC services library
librpcsvc . a. Thus, the program above should be compiled with

(% cc program.c -lrpcsvc
J

This routine, and other RPC library routines, are documented in section 3R of the
System Interface Manual/or the Sun Workstation. Here is a table ofRPC ser­
vice library routines available to the C programmer:

7 Revision B of 17 February 1986

8 RPC Programming

Table 2-1 RPC Service Library Routines

RPC Service Library Routines

routine description

rnusers () return number of users on remote machine
rusers () return infonnation about users on remote machine
havedisk () determine if remote machine has disk
rstat () get performance data from remote kernel
rwall () write to specified remote machines
getmaster() get name of yP master
getrpcport() get RPC port number
yppasswd() update user password in yellow pages

The other RPC services - ether, mount, rquota, and spr ay - are not
available to the C programmer as library routines. They do, however, have RPC
program numbers so they can be invoked with callrpc (), which will be dis­
cussed in the next section.

~\sun
~ microsystems

Revision B of 17 February 1986

t2. Intermediate Layer

Chapter 2 - Higher Layers of RPC 9

The simplest interface, which explicitly makes RPC calls, uses the functions
callrpc () and registerrpc (). Using this method, another way to get the
number of remote users is:

iinclude <stdio.h>
iinclude <rpcsvc/rusers.h>

main (argc, argv)
int argc;
char **argv;

unsigned long nusers;

if (argc < 2)
fprintf(stderr, "usage: nusers hostnarne\n");
exit(-l);

if (callrpc(argv[l],
RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
xdr_void, 0, xdr_u_long, &nusers) != 0)

fprintf(stderr, "error: callrpc\n");
exit(l);

printf("%d users on %s\n", nusers, argv[l]);
exit(O);

A program number, version number, and procedure number defines each RPC
procedure. The program number defines a group of related remote procedures,
each of which has a different procedure number. Each program also has a ver­
sion number, so when a minor change is made to a remote service (adding a new
procedure, for example), a new program number doesn't have to be assigned.
When you want to call a procedure to find the number of remote users, you look
up the appropriate program, version and procedure numbers in a manual, similar
to when you look up the name of memory allocator when you want to allocate
memory.

The simplest routine in the RPC library used to make remote procedure calls is
callrpc (). It has eight parameters. ~e first is the name of the remote
machine. The next three parameters are the program, version, and procedure
numbers. The following two parameters define the argument of the RPC call,
and the final two parameters are for the return value of the call. If it completes
successfully, callrpc () returns zero, but nonzero otherwise. The exact mean­
ing of the return codes is found in <rpc/ clnt. h>, and is in fact an enum
clnt_stat cast into an integer.

Since data types may be represented differently on different machines,
callrpc () needs both the type of the RPC argument, as well as a pointer to
the argument itself (and similarly for the result). For RUSERSPROC_NUM, the
return value is an unsigned long, so callrpc () has xdr_u_long as its
first return parameter, which says that the result is of type unsigned long,
and &nusers as its second return parameter, which is a pointer to where the

Revision B of 17 February 1986

10 RPC Programming

long result will be placed. Since RUSERSPROC_NUM takes no argument, the
argument parameter of callrpc () is xdr _void.

After trying several times to deliver a message, if callrpc () gets no answer, il
returns with an error code. The delivery mechanism is UDP, which stands for
User Datagram Protocol. Methods for adjusting the number of retries or for
using a different protocol require you to use the lower layer of the RPC library,
discussed later in this document The remote server procedure corresponding to
the above might look like this:

char *
nuser(indata)

char *indata;

static int nusers;

/*
* code here to compute the number of users
* and place result in variable nusers
*/

return«char *)&nusers);

It takes one argument, which is a pointer to the input of the remote procedure cal]
(ignored in our example), and it returns a pointer to the result. In the current ver­
sion of C, character pointers are the generic pointers, so both the input argument
and the return value are cast to char *.

Normally, a server registers all of the RPC calls it plans to handle, and then goes
into an infinite loop waiting to service requests. In this example, there is only a
single procedure to register, so the main body of the server would look like this:

#include <stdio.h>
#include <rpcsvc/rusers.h>

char *nuser();

main ()
{

registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
nuser, xdr_void, xdr_u_long);

svc_run(); /* never returns */
fprintf(stderr, "Error: svc run returned!\n");
exit(l);

The registerrpc () routine establishes what C procedure corresponds to
each RPC procedure number. The first three parameters, RUSERPROG,
RUSERSVERS, and RUSERSPROC _ NUM are the program, version, and pro­
cedure numbers of the remote procedure to be registered; nuser () is the name
of the C procedure implementing it; and xdr_ void and xdr_u_long are the

Revision B of 17 February 198~

~.3. Assigning Program
Numbers

2.4. Passing Arbitrary Data
Types

Chapter 2 - Higher Layers of RPC 11

types of the input to and output from the procedure.

Only the UDP transport mechanism can use registerrpc () ; thus, it is
always safe in conjunction with calls generated by callrpc () .

Warning: the UDP transport mechanism can only deal with arguments and results
less than 8K bytes in length.

Program numbers are assigned in groups ofOx20000000 (536870912) according
to the following chart:

0 - 1fffffff defined by sun
20000000 - 3fffffff defined by user
40000000 - Sfffffff transient
60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
aOOOOOOO - bfffffff reserved
cOOOOOOO - dfffffff reserved
eOOOOOOO - ffffffff reserved

Sun Microsystems administers the first group of numbers, which should be ident­
ical for all Sun customers. If a customer develops an application that might be of
general interest, that application should be given an assigned number in the first
range. The second group of numbers is reserved for specific customer applica­
tions. This range is intended primarily for debugging new programs. The third
group is reserved for applications that generate program numbers dynamically.
The final groups are reserved for future use, and should not be used.

To register a protocol specification, send a request by network mail to sun! rpc,
or write to:

RPC Administrator
Sun Microsystems
2550 Garcia Ave.
Mountain View, CA 94043

Please include a complete protocol specification, similar to those in this manual
for NFS and YP. You will be given a unique program number in return.

In the previous example, the RPC call passes a single unsigned long. RPC
can handle arbitrary data structures, regardless of different machines' byte orders
or structure layout conventions, by always converting them to a network standard
called eXternal Data Representation (XDR) before sending them over the wire.
The process of converting from a particular machine representation to XDR for­
mat is called serializing, and the reverse process is called deserializing. The
type field parameters of callrpc () and registerrpc () can be a built-in
procedure like xdr _ u _long () in the previous example, or a user supplied one.
XDR has these built-in type routines:

Revision B of 17 February 1986

12 RPC Programming

xdr_int ()
xdr_long()
xdr_short ()

xdr_u_int ()
xdr_u_long ()
xdr_u_short ()

xdr_enum ()
xdr_bool ()
xdr_string ()

As an example of a user-defined type routine, if you wanted to send the structure

struct simple
int ai

short bi
simplei

then you would call callrpc () as

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
xdr_simple, &simple ...);

where xdr_simple () is written as:

finclude <rpc/rpc.h>

xdr_simple(xdrsp, simplep)
XDR *xdrsp;
struct simple *simplep;

if (!xdr_int(xdrsp, &simplep->a»
return (0);

if (!xdr_short(xdrsp, &simplep->b»
return (0);

return (1);

An XDR routine returns nonzero (true in the sense of C) if it completes success­
fully, and zero otherwise. A complete description of XDR is in the XDR Proto­
col Specification, so this section only gives a few examples of XDR implementa­
tion.

In addition to the built-in primitives, there are also the prefabricated building
blocks:

xdr_array ()
xdr_reference()

xdr_bytes ()
xdr _union ()

To send a variable array of integers, you might package them up as a structure
like this

~)sun
~ microsystems

Revision B of 17 February 198

Chapter 2 - Higher Layers of RPC 13

struct varintarr
int *data;
int arrlnth;

arr;

and make an RPC call such as

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
xdr_varintarr, &arr ...);

with xdr _ var intarr () defined as:

xdr_varintarr(xdrsp, arrp)
XDR *xdrsp;
struct varintarr *arrp;

xdr_array(xdrsp, &arrp->data, &arrp->arrlnth, MAXLEN,
sizeof(int), xdr_int);

This routine takes as parameters the XDR handle, a pointer to the array, a pointer
to the size of the array, the maximum allowable array size, the size of each array
element, and an XDR routine for handling each array element.

If the size of the array is known in advance, then the following could also be used
to send out an array of length SIZE:

int intarr[SIZE];

xdr_intarr(xdrsp, intarr)
XDR *xdrsp;
int intarr[];

int i;

for (i = 0; i < SIZE; i++) {
if (!xdr_int(xdrsp, &intarr[i]»

return (0);

return (1);

XDR always converts quantities to 4-byte multiples when deserializing. Thus, if
either of the examples above involved characters instead of integers, each charac­
ter would occupy 32 bits. That is the reason for the XDR routine
xdr _bytes () , which is like xdr _array () except that it packs characters;
xdr _byte s () has four parameters, similar to the first four parameters of
xdr _array (). For null-terminated strings, there is also the xdr _string ()
routine, which is the same as xdr_bytes () without the length parameter. On

.\s1In ~~ microsystems
Revision B of 17 February 1986

14 RPC Programming

serializing it gets the string length from strlen () , and on deserializing it
creates a null-terminated string.

Here is a final example that calls the previously written xdr _simple () as well
as the built-in functions xdr_string () and xdr_reference (), which
chases pointers:

struct finalexample
char *string;
struct simple *simplep;

finalexample;

xdr_finalexample(xdrsp, finalp)
XDR *xdrsp;
struct finalexample *finalp;

int i;

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN)
return (0);

if (!xdr_reference(xdrsp, &finalp->simplep,
sizeof(struct simple), xdr_simple);

return (0);
return (1);

Revision B of 17 February 1986

3
Lowest Layer of RPC

Lowest Layer of RPC .. 17

3.1. More on the Server Side .. 17

3.2. Memory Allocation with. XDR .. 20

3.3. The Calling Side .. 21

3.1. More on the Server Side

3
Lowest Layer of RPC

In the examples given so far, RPC takes care of many details automatically for
you. In this section, we'll show you how you can change the defaults by using
lower layers of the RPC library. It is assumed that you are familiar with sockets
and the system calls for dealing with them. If not, consult the [PC Primer.

There are several occasions when you may need to use lower layers of RPC.
First, you may need to use TCP. The higher layer uses UDP, which restricts
RPC calls to 8K bytes of data. Using TCP permits calls to send long streams of
data. For an example, see section 5.2 below. Second, you may want to allocate
and free memory while serializing or deserializing with XDR routines. There is
no call at the higher level to let you free memory explicitly. For more explana­
tion, see section 3.2 below. Third, you may need to perform authentication on
either the client or server side, by supplying credentials or verifying them. See
the explanation in section 4.4 below.

The server for the nusers program shown below does the same thing as the one
using regi sterrpc () above, but is written using a lower layer of the RPC
package:

*include <stdio.h>
*include <rpc/rpc.h>
*include <rpcsvc/rusers.h>

main ()
{

SVCXPRT *transp;
int nuser();

transp = svcudp_create(RPC_ANYSOCK);
if (transp == NULL) {

fprintf(stderr, "can't create an RPC server\n");
exit(l);

pmap_unset(RUSERSPROG, RUSERSVERS);
if (!svc_register(transp, RUSERSPROG, RUSERSVERS,

nuser, IPPROTO_UDP» {
fprintf(stderr, "can't register RUSER service\nn);
exit(l);

svc_run()i /* never returns */

~\sun ~~ microsystems
17 Revision B of 17 February 1986

18 RPC Programming

fprintf(stderr, "should never reach this point\nn);

nuser(rqstp, tranp)
struct svc_req *rqstp;
SVCXPRT *transp;

unsigned long nusers;

switch (rqstp->r~roc)
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0) {
fprintf(stderr, "can't reply to RPC call\n");
exit(l);

return;
case RUSERSPROC NUM:

/*
* code here to compute the number of users
* and put in variable nusers
*/

if (!svc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr, "can't reply to RPC call\n");
exit(l);

return;
default:

svcerr_noproc(transp);
return;

First, the server gets a transport handle, which is used for sending out RPC mes­
sages. registerrpc () uses svcudp _create () to get a UDP handle. If
you require a reliable protocol, call svctcp_create () instead. If the argu­
ment to svcudp_create () is RPC_ANYSOCK, the RPC library creates a
socket on which to send out RPC calls. Otherwise, svcudp _create ()
expects its argument to be a valid socket number. If you specify your own
socket, it can be bound or unbound. If it is bound to a port by the user, the port
numbers of svcudp_create () and clntudp_create () (the low-level
client routine) must match.

When the user specifies RPC _ ANY SOCK for a socket or gives an unbound socket,
the system determines port numbers in the following way: when a server starts
up, it advertises to a port mapper demon on its local machine, which picks a port
number for the RPC procedure if the socket specified to svcudp _create ()
isn't already bound. When the clntudp _create () call is made with an
unbound socket, the system queries the port mapper on the machine to which the
call is being made, and gets the appropriate port number. If the port mapper is
not running or has no port corresponding to the RPC call, the RPC call fails.
Users can make RPC calls to the port mapper themselves. The appropriate pro­
cedure numbers are in the include file <rpc/pmapyrot. h>.

Revision B of 17 February 1986

Chapter 3 - Lowest Layer of RPC 19

After creating an SVCXPRT, the next step is to call pmap_unset () so that if
the nus e r s server crashed earlier, any previous trace of it is erased before res­
tarting. More precisely, pmap _unset () erases the entty for RUSERSPROG
from the port mapper's tables.

Finally, we associate the program number for nusers with the procedure
nuser (). The final argument to svc_register () is normally the protocol
being used, which, in this case, is IPPROTO _ UDP. Notice that unlike
registerrpc () , there are no XDR routines involved in the registration pro­
cess. Also, registration is done on the program, rather than procedure, level.

The user routine nuser () must call and dispatch the appropriate XDR routines
based on the procedure number. Note that two things are handled by nuser ()
that registerrpc () handles automatically. The first is that procedure
NULLPROC (currently zero) returns with no arguments. This can be used as a
simple test for detecting if a remote program is running. Second, there is a check
for invalid procedure numbers. If one is detected, svcerr _ noproc () is
called to handle the error.

The user service routine serializes the results and returns them to the RPC caller
via svc _ sendreply (). Its first parameter is the SVCXPRT handle, the
second is the XDR routine, and the third is a pointer to the data to be returned.
Not illustrated above is how a server handles an RPC program that passes data.
As an example, we can add a procedure RUSERSPROC _ BOOL, which has an
argument nusers, and returns TRUE or FALSE depending on whether there are
nusers logged on. It would look like this:

case RUSERSPROC_BOOL: {
int bool;
unsigned nuserquery;

if (!svc_getargs(transp, xdr_u_int, &nuserquery) {
svcerr_decode(transp);
return;

/*
* code to set nusers = number of users
*/

if (nuserquery nusers)
bool TRUE;

else
bool FALSE;

if (!svc_sendreply(transp, xdr_bool, &bool) {
fprintf(stderr, "can't reply to RPC call\n");
exit(l);

return;

The relevant routine is svc_getargs () , which takes an SVCXPRT handle, the
XDR routine, and a pointer to where the input is to be placed as arguments.

Revision B of 17 February 1986

20 RPC Programming

3.2. Memory Allocation with
XDR

XDR routines not only do input and output, they also do memory allocation.
This is why the second parameter of xdr _ arr a y () is a pointer to an array,
rather than the array itself. If it is NULL, then xdr_array () allocates space
for the array and returns a pointer to it, putting the size of the array in the third
argument. As an example, consider the following XDR routine
xdr_chararrl (), which deals with a fixed array of bytes with length SIZE:

xdr_chararrl(xdrsp, chararr)
XDR *xdrsp;
char chararr[];

char *p;
int len;

p = chararr;
len = SIZE;
return (xdr_bytes(xdrsp, &p, &len, SIZE»;

It might be called from a server like this,

char chararr[SIZE];

svc_getargs(transp, xdr_chararrl, chararr);

where char ar r has already allocated space. If you want XDR to do the alloca­
tion, you would have to rewrite this routine in the following way:

xdr_chararr2(xdrsp, chararrp)
XDR *xdrsp;
char **chararrp;

int len;

len = SIZE;
return (xdr_bytes(xdrsp, charrarrp, &len, SIZE»;

Then the RPC call might look like this:

char *arrptr;

arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);
/*

* use the result here
*/

svc_freeargs(transp, xdr_chararr2, &arrptr);

After using the character array, it can be freed with svc _ freeargs (). In the
routine xdr_finalexample () given earlier, if finalp->string was

~\sun ,~ microsystems
Revision B of 17 February 1986

3.3. The Calling Side

Chapter 3 - Lowest Layer of RPC 21

NULL in the call

svc_getargs(transp, xdr_finalexample, &finalp);

then

svc_freeargs(xdrsp, xdr_finalexample, &finalp);

frees the array allocated to hold finalp->string; otherwise, it frees nothing.
The same is true for finalp->simplep.

To summarize, each XDR routine is responsible for serializing, deserializing, and
allocating memory. When an XDR routine is called from callrpc () ,the seri­
alizing part is used. When called from svc _getargs () , the deserializer is
used. And when called from svc_freeargs () , the memory deallocator is
used. When building simple examples like those in this section, a user doesn't
have to worry about the three modes. The XDR reference manual has examples
of more sophisticated XDR routines that determine which of the three modes
they are in to function correctly.

When you use callrpc () , you have no control over the RPC delivery
mechanism or the socket used to transport the data. To illustrate the layer of
RPC that lets you adjust these parameters, consider the following code to call the
nusers service:

iinclude <stdio.h>
iinclude <rpc/rpc.h>
iinclude <rpcsvc/rusers.h>
iinclude <sys/socket.h>
iinclude <sys/time.h>
iinclude <netdb.h>

main (argc, argv)
int argc;
char **argv;

struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int addrlen, sock = RPC_ANYSOCK;
register CLIENT *client;
enum clnt_stat clnt_stat;
unsigned long nusers;

if (argc < 2) {
fprintf(stderr, "usage: nusers hostname\n");
exit(-l) ;

if «hp = gethostbyname(argv[l]» == NULL) {
fprintf(stderr, "can't get addr for %s\n",argv[l]);
exit (-1) ;

Revision B of 17 February 1986

22 RPC Programming

pertry_timeout.tv_sec = 3;
pertry_timeout.tv_usec = 0;
addrlen = sizeof(struct sockaddr_in);
bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,

hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin-port = 0;
if «client = clntudp_create(&serve~_addr, RUSERSPROG,

RUSERSVERS, pertry_timeout, &sock» == NULL) {
clnt-pcreateerror("clntudp_create");
exit(-l);

total_timeout. tv_sec = 20;
total_timeout.tv_usec = 0;
clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr_void,

0, xdr_u_long, &nusers, total_timeout);
if (clnt_stat != RPC_SUCCESS) {

clnt-perror(client, "rpc");
exit(-l);

clnt_destroy(client);

The low-level version of callrpc () is clnt_call (), which takes a
CLIENT pointer rather than a host name. The parameters to clnt _call () are
a CLIENT pointer, the procedure number, the XDR routine for serializing the
argument, a pointer to the argument, the XDR routine for deserializing the return
value, a pointer to where the return value will be placed, and the time in seconds
to wait for a reply.

The CLIENT pointer is encoded with the transport mechanism. callrpc ()
uses UDP, thus it calls clntudp_create () to get a CLIENT pointer. To get
TCP (Transport Control Protocol), you would use cl nt t cp _ crea t e () .

The parameters to clnt udp _ create () are the server address, the length of
the server address, the program number, the version number, a timeout value
(between tries), and a pointer to a socket. The final argument to clnt _call ()
is the total time to wait for a response. Thus, the number of tries is the
clnt _call () timeout divided by the clntudp _create () timeout.

There is one thing to note when using the clnt _destroy () call. It deallo­
cates any space associated with the CL lENT handle, but it does not close the
socket associated with it, which was passed as an argument to
clnt udp _create () . The reason is that if there are multiple client handles
using the same socket, then it is possible to close one handle without destroying
the socket that other handles are using.

To make a stream connection, the call to clntudp_create () is replaced
with a call to clnttcp_create ().

Revision B of 17 February 1986

Chapter 3 - Lowest Layer of RPC 23

clnttcp_create(&server_addr, prognum, versnum, &socket,
inputsize, outputsize)i

There is no timeout argument; instead, the receive and send buffer sizes must be
specified. When the clnttcp_create () call is made, a TCP connection is
established. All RPC calls using that CLIENT handle would use this connection.
The server side of an RPC call using TCP has svcudp _ crea te () replaced by
svctcp_create() .

• \sun ,~ microsystems
Revision B of 17 February 1986

4

Other RPC Features

Other RPC Features .. 27

4.1. Select on the Server Side ... 27

4.2. Broadcast RPC .. 28

Broadcast RPC Synopsis .. 28

4.3. Batching .. 29

4.4. Aut:l1entication ... 32

The Client Side .. 32

The Server Side .. 33

4.5. Using Inetd .. 35

~.1. Select on the Server Side

4
Other RPC Features

This section discusses some other aspects of RPC that are occasionally useful.

Suppose a process is processing RPC requests while performing some other
activity. If the other activity involves periodically updating a data structure, the
process can set an alarm signal before calling svc _run (). But if the other
activity involves waiting on a a file descriptor, the svc _run () call won't work.
The code for s vc _ run () is as follows:

void
svc_run ()
{

int readfds;

for (;;) {
readfds = svc_fds;
switch (select (32, &readfds, NULL, NULL, NULL)) {

case -1:
if (errno == EINTR)

continue;
perror("rstat: select");
return;

case 0:
break;

default:
svc_getreq(readfds);

You can bypass svc_run () and call svc_getreq () yourself. All you need
to know are the file descriptors of the socket(s) associated with the programs you
are waiting on. Thus you can have your own select () that waits on both the
RPC socket, and your own descriptors.

27 Revision B of 17 February 1986

28 RPC Programming

4.2. Broadcast RPC

Broadcast RPC Synopsis

The portmapper is a daemon that converts RPC program numbers into DARPA
protocol port numbers; see portmap(8). You can't do broadcast RPC without
the portmapper, pmap, in conjunction with standard RPC protocols. Here are the
main differences between broadcast RPC and normal RPC calls:

1. Normal RPC expects one answer, whereas broadcast RPC expects many
answers (one or more answer from each responding machine).

2. Broadcast RPC can only be supported by packet-oriented (connectionless)
transport protocols like UPD/IP.

3. The implementation of broadcast RPC treats all unsuccessful responses as
garbage by filtering them out. Thus, if there is a version mismatch between
the broadcaster and a remote service, the user of broadcast RPC never
knows.

4. All broadcast messages are sent to the portmap port. Thus, only services
that register themselves with their portmapper are accessible via the broad­
cast RPC mechanism.

#include <rpc/pmap_clnt.h>

enum clnt stat clnt_stati

clnt stat =
clnt_broadcast(prog, vers, proc, xargs, argsp, xresults,

resultsp, eachresult)
u_long progi /* program number */
u_long verSi /* version number */
u_long proci /* procedure number */
xdrproc_t xargs; /* xdr routine for args */
caddr t argspi /* pointer to args */
xdrproc_t xresultsi /* xdr routine for results */
caddr t resultspi /* pointer to results */
bool t (*eachresult) () i /* call with each result gotten */

The procedure eachresul t () is called each time a valid result is obtained. It
returns a boolean that indicates whether or not the client wants more responses.

bool t done;

done =
eachresult(resultsp, raddr)
caddr_t resultsp;
struct sockaddr_in *raddr; /* addr of responding machine *

If done is TRUE, then broadcasting stops and clnt _broadcast () returns
successfully. Otherwise, the routine waits for another response. The request is
rebroadcast after a few seconds of waiting. If no responses come back, the rou­
tine returns with RPC_TIMEDOUT. To interpret clnt_stat errors, feed the
error code to clnt _perrno () .

~\sun ,~ microsystems
Revision B of 17 February 198/

4.3. Batching

Chapter 4 - Other RPC Features 29

The RPC architecture is designed so that clients send a call message, and wait for
servers to reply that the call succeeded. This implies that clients do not compute
while servers are processing a call. This is inefficient if the client does not want
or need an acknowledgement for every message sent. It is possible for clients to
continue computing while waiting for a response, using RPC batch facilities.

RPC messages can be placed in a "pipeline" of calls to a desired server; this is
called batching. Batching assumes that: 1) each RPC call in the pipeline requires
no response from the server, and the server does not send a response message;
and 2) the pipeline of calls is transported on a reliable byte stream transport such
as TCPIIP. Since the server does not respond to every call, the client can gen­
erate new calls in parallel with the server executing previous calls. Furthermore,
the TCP/IP implementation can buffer up many call messages, and send them to
the server in one wr it e () system call. This overlapped execution greatly
decreases the interprocess communication overhead of the client and server
processes, and the total elapsed time of a series of calls.

Since the batched calls are buffered, the client should eventually do a legitimate
call in order to flush the pipeline.

A contrived example of batching follows. Assume a string rendering service
(like a window system) has two similar calls: one renders a string and returns
void results, while the other renders a string and remains silent. The service
(using the TCP/IP transport) may look like:

iinclude <stdio.h>
iinclude <rpc/rpc.h>
iinclude <rpcsvc/windows.h>

void windowdispatch();

main ()
{

SVCXPRT *transp;

transp = svctcp_create(RPC_ANYSOCK, 0, 0);
if (transp == NULL) {

fprintf(stderr, "can't create an RPC server\n");
exit(l);

pmap_unset(WINDOWPROG, WINDOWVERS);

void

if (!svc_register(transp, WINDOWPROG, WINDOWVERS,
windowdispatch, IPPROTO_TCP)) {

fprintf(stderr, "can't register WINDOW service\n");
exit(l);

svc_run(); /* never returns */
fprintf(stderr, "should never reach this point\nn);

windowdispatch(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

Revision B of 17 February 1986

30 RPC Programming

char *s = NULL;

switch (rqstp->r~roc)
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0» {
fprintf(stderr, "can't reply to RPC call\n");
exit(l);

return;
case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s» {
fprintf(stderr, "can't decode arguments\n");
/*

/*

* tell caller he screwed up
*/

svcerr_decode(transp);
break;

* call here to render the string s
*/

if (!svc_sendreply(transp, xdr_void, NULL» {
fprintf(stderr, "can't reply to RPC call\n");
exit(l);

break;
case RENDERSTRING BATCHED:

if (!svc_getargs(transp, xdr_wrapstring, &s» {
fprintf(stderr, "can't decode arguments\n");
/*
* we are silent in the face of protocol errors
*/

break;

/*
* call here to render string s, but send no reply!
*/

break;
default:

svcerr_noproc(transp);
return;

/*
* now free string allocated while decoding arguments
*/

svc_freeargs(transp, xdr_wrapstring, &s);

Of course the service could have one procedure that takes the string and a
boolean to indicate whether or not the procedure should respond.

In order for a client to take advantage of batching, the client must perform RPC
calls on a TCP-based transport and the actual calls must have the following

Revision B of 17 February 1986

Chapter 4 - Other RPC Features 31

attributes: 1) the result's XDR routine must be zero (NULL), and 2) the RPC
call's timeout must be zero.

Here is an example of a client that uses batching to render a bunch of strings; the
batching is flushed when the client gets a null string:

*include <stdio.h>
*include <rpc/rpc.h>
*include <rpcsvc/windows.h>
*include <sys/socket.h>
*include <sys/time.h>
*include <netdb.h>

main (argc, argv)
int argc;
char **argv;

struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int addrlen, sock = RPC_ANYSOCK;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[lOOO], *s = buf;

/* initial as in example 3.3
*/

if «client = clnttcp_create(&server_addr,
WINDOWPROG, WINDOWVERS, &sock, 0, 0» == NULL) {

perror("clnttcp_create");
exit(-l);

total_timeout.tv_sec = 0;
total_timeout.tv_usec = 0;
while (scanf ("%s", s) != EOF)

clnt_stat = clnt_call(client, RENDERSTRING_BATCHED,
xdr_wrapstring, &s, NULL, NULL, total_timeout);

if (clnt_stat != RPC_SUCCESS) {
clntyerror(client, "batched rpc");
exit(-l);

/* now flush the pipeline
*/

total timeout.tv_sec = 20;
clnt_stat = clnt_call(client, NULLPROC, xdr_void, NULL,

xdr_void, NULL, total_timeout);
if (clnt_stat != RPC_SUCCESS) {

clntyerror(client, "rpc");
exit(-l);

clnt_destroy(client);

Revision B of 17 February 1986

32 RPC Programming

4.4. Authentication

The Client Side

Since the server sends no message, the clients cannot be notified of any of the
failures that may occur. Therefore, clients are on their own when it comes to
handling errors.

The above example was completed to render all of the (2000) lines in the file
f etc/termcap. The rendering service did nothing but throw the lines away. The
example was run in the following four configurations: 1) machine to itself, regu­
lar RPC; 2) machine to itself, batched RPC; 3) machine to another, regular RPC;
and 4) machine to another, batched RPC. The results are as follows: 1) 50
seconds; 2) 16 seconds; 3) 52 seconds; 4) 10 seconds. Running f scanf () on
fetc/termcap only requires six seconds. These timings show the advantage of
protocols that allow for overlapped execution, though these protocols are often
hard to design.

In the examples presented so far, the caller never identified itself to the server,
and the server never required an ID from the caller. Clearly, some network ser­
vices, such as a network filesystem, require stronger security than what has been
presented so far.

In reality, every RPC call is authenticated by the RPC package on the server, and
similarly, the RPC client package generates and sends authentication parameters.
Just as different transports (TCP/IP or UDP/IP) can be used when creating RPC
clients and servers, different forms of authentication can be associated with RPC
clients; the default authentication type used as a default is type none.

The authentication subsystem of the RPC package is open ended. That is,
numerous types of authentication are easy to support. However, this section
deals only with unix type authentication, which besides none is the only sup­
ported type.

When a caller creates a new RPC client handle as in:

clnt = clntudp_create(address, prognum, versnum,
wait, sockp)

the appropriate transport instance defaults the associate authentication handle to
be

(clnt->cl_auth = authnone_create();

The RPC client can choose to use unix style authentication by setting clnt­
>c I_au th after creating the RPC client handle:

clnt->cl_auth = authunix_create_default();

This causes each RPC call associated with c In t to carry with it the following
authentication credentials structure:

]

Revision B of 17 February 1986

The Server Side

Chapter 4 - Other RPC Features 33

/*
* Unix style credentials.
*/

struct authunix-parms {
u_long aup_time; /* credentials creation time */
char *aup_machname; /* host name where client is */
int aup_uid; /* client's UNIX effective uid */
int aup_gid; /* client's current group id */
u int aup_len; /* element length of aup_gids */
int *aup_gids; /* array of groups user is in */

} ;

These fields are set by authunix _create _ defaul t () by invoking the
appropriate system calls. Since the RPC user created this new style of authenti­
cation, the user is responsible for destroying it with:

(~a_u_t_h ___ d __ e_s_t_r_o_Y_(_C_l_n_t_-_>_c_l ___ a_u_t_h __)_; ______________________________ ~J
This should be done in all cases, to conserve memory.

Service implementors have a harder time dealing with authentication issues since
the RPC package passes the service dispatch routine a request that has an arbi­
trary authentication style associated with it Consider the fields of a request han­
dle passed to a service dispatch routine:

/*
* An RPC Service request
*/

struct svc_req {
u_long rCLProg;
u_long r'L-vers;
u_long rCLProc;
struct opaque_auth

} ;

r'L-cred;
caddr t r'L-clntcred;

/* service program number */
/* service protocol vers num */
/* desired procedure number */

/* raw credentials from wire */
/* credentials (read only) */

The r~ cred is mostly opaque, except for one field of interest: the style of
authentication credentials:

/*
* Authentication info.
*/

struct opaque_auth {
enum t oa_flavor;
caddr t oa_base;
u int oa_length;

} ;

.\sun ,~ microsystems

Mostly opaque to the programmer.

/* style of credentials */
/* address of more auth stuff */
/* not to exceed MAX AUTH BYTES */

Revision B of 17 February 1986

34 RPC Programming

The RPC package guarantees the following to the service dispatch routine:

1. That the request's r<L.cred is well formed. Thus the service implementor
may inspect the request's r<L.cred. oa_flavor to determine which style
of authentication the caller used The service implementor may also wish to
inspect the other fields of r<L. cred if the style is not one of the styles sup­
ported by the RPC package.

2. That the request's r<L. clntcred field is either NULL or points to a well
formed structure that corresponds to a supported style of authentication
credentials. Remember that only unix style is currently supported, so
(currently) r<L. clntcred could be cast to a pointer to an
authunix-parmssttucture.Ifr<L.clntcredisNULL,theservice
implementor may wish to inspect the other (opaque) fileds of r<L. cred in
case the service knows about a new type of authentication that the RPC
package does not know about

Our remote users service example can be extended so that it computes results for
all users except UID 16:

nuser(rqstp, tranp)
struct svc_req *rqstp;
SVCXPRT *transp;

struct authunix-parms *unix_cred;
int uid;
unsigned long nusers;

/*
* we don't care about authentication for null proc
*/

if (rqstp->r~roc == NULLPROC) {
if (!svc_sendreply(transp, xdr_void, 0» {

fprintf(stderr, "can't reply to RPC call\n");
exit(l);

return;

/*
* now get the uid
*/

switch (rqstp->r~cred.oa_flavor) {
case AUTH UNIX:

unix_cred = (struct authunix-parms *)rqstp->r~clnt
uid = unix_cred->aup_uid;
break;

case AUTH NULL:
default:

svcerr_weakauth(transp);
return;

switch (rqstp->r~roc)
case RUSERSPROC NUM:

~\Slln
~ microsystems

Revision B of 17 February 198ti

4.5. Using Inetd

Chapter 4 - Other RPC Features 35

1*
* make sure caller is allowed to call this proc
*1

if (uid == 16) {
svcerr_systemerr(transp) ;
return;

1*
* code here to compute the number of users
* and put in variable nusers
*1

if (!svc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr, "can't reply to RPe call\nlf);
exit(l);

return;
default:

svcerr_noproc(transp);
return;

A few things should be noted here. First, it is customary not to check the authen­
tication parameters associated with the NULLPROC (procedure number zero).
Second, if the authentication parameter's type is not suitable for your service,
you should call svcerr_weakauth (). And finally, the service protocol itself
should return status for access denied; in the case of our example, the protocol
does not have such a status, so we call the service primitive
svcerr_systemerr () instead.

The last point underscores the relation between the RPC authentication package
and the services; RPC deals only with authentication and not with individual ser­
vices' access control. The services themselves must implement their own access
control policies and reflect these policies as return statuses in their protocols.

An RPC server can be started from inetd. The only difference from the usual
code is that svcudp _create () should be called as

(transp = svcudp_create(O);

since inet passes a socket as file descriptor O. Also, svc _register ()
should be called as

svc_register(transp, PROGNUM, VERSNUM, service, 0);

]

with the final flag as 0, since the program would already be registered by inetd.
Remember that if you want to exit from the server process and return control to
inet, you need to explicitly exit, since svc _run () never returns.

Revision B of 17 February 1986

36 RPC Programming

The format of entries in /etc/servers for RPC services is

[rpc udp server program version

where server is the C code implementing the server, and program and version
are the program and version numbers of the service. The key word udp can be
replaced by tcp for TCP-based RPC services.

If the same program handles multiple versions, then the version number can be a
range, as in this example:

(rpc udp /usr/etc/rstatd 100001 1-2

]

]

~\sun
~ microsystems

Revision B of 17 February 1986

5
More Examples

More Examples .. 39

5.1. Versions .. 39

5.2. TCP .. 40

5.3. Callback Procedures ... 43

S.1. Versions

5
More Examples

By convention, the first version number of program PROG is PROGVERS_ORIG
and the most recent version is PROGVERS. Suppose there is a new version of the
user program that returns an unsigned short rather than a long. Ifwe
name this version RUSERSVERS _SHORT, then a server that wants to support
both versions would do a double register.

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG,
nuser, IPPROTO_TCP» {

fprintf(stderr, "can't register RUSER service\n");
exit(l);

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT,
nuser, IPPROTO_TCP» {

fprintf(stderr, "can't register RUSER service\n");
exit(l);

Both versions can be handled by the same C procedure:

nuser(rqstp, tranp)
struct svc_req *rqstp;
SVCXPRT *transp;

unsigned long nusers;
unsigned short nusers2

switch (rqstp->r~roc)
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0» {
fprintf(stderr, "can't reply to RPC call\n");
exit(l);

return;
case RUSERSPROC NUM:

~\sun ~ microsystems

/*
* code here to compute the number of users
* and put in variable nusers
*/

nusers2 = nusers;

39 Revision B of 17 February 1986

40 RPC Programming

5.2. TCP

if (rqstp->r~vers != RUSERSVERS_ORIG)
return;

if (!svc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr, "can't reply to RPC call\n");
exit(l);

else
if (!svc_sendreply(transp, xdr_u_short, &nusers2)

fprintf(stderr, "can't reply to RPC call\n")i
exit(l);

return;
default:

svcerr_noproc(transp)i
return;

Here is an example that is essentially rep. The initiator of the RPC snd () call
takes its standard input and sends it to the server rev () , which prints it on stan­
dard output. The RPC call uses TCP. This also illustrates an XDR procedure
that behaves differently on serialization than on deserialization.

/*
* The xdr routine:
* on decode, read from wire, write onto fp
* on encode, read from fp, write onto wire
*/

*include <stdio.h>
*include <rpc/rpc.h>

xdr_rcp(xdrs, fp)
XDR *xdrs;
FILE *fp;

unsigned long size;
char buf[BUFSIZ], *p;

if (xdrs->x_op
return 1;

while (1) {

XDR_FREE)/* nothing to free */

~\sun ~~ microsystems

if (xdrs->x_op == XDR_ENCODE) {
if ((size = fread(buf, sizeof(char), BUFSIZ,

fp» == 0 && ferror(fp» (
fprintf(stderr, "can't fread\n");
exit(l);

p buf;
if (!xdr_bytes(xdrs, &p, &size, BUFSIZ»

return 0;
if (size == 0)

return 1;

Revision B of 17 February 1986

/*

Chapter 5 - More Examples 41

if (xdrs->x_op == XDR_DECODE) {
if (fwrite(buf, sizeof(char), size,

fp) ! = size) {
fprintf(stderr, "can't fwrite\n"):
exit(l):

* The sender routines
*/

*include <stdio.h>
*include <netdb.h>
*include <rpc/rpc.h>
*include <sys/socket.h>
*include <sys/time.h>

main (argc, argv)
int argc:
char **argv:

int err:

if (argc < 2) {
%s servername\n"; argv[O]);

exit(-l);

if «err = callrpctcp(argv[l], RCPPROG, RCPPROC_FP,
RCPVERS, xdr_rcp, stdin, xdr_void, 0) != 0» {

clnt-perrno(err):
fprintf(stderr, "can't make RPC call\n"):
exit(l);

callrpctcp(host, prognum, procnum, versnum,
inproc, in, outproc, out)

char *host, *in, *out;
xdrproc_t inproc, outproc:

struct sockaddr_in server_addr;
int socket = RPC_ANYSOCK:
enum clnt_stat clnt_stat;
struct hostent *hp:
register CLIENT *client;
struct timeval total_timeout:

if «hp = gethostbyname(host» == NULL)
fprintf(stderr, "can't get addr for '%s'\n", host);
exit (-1) ;

bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,
hp->h_length):

server_addr.sin_family AF_INET:

Revision B of 17 February 1986

42 RPC Programming

/*

server_addr.sin-port = 0;
if «client = clnttcp_create(&server_addr, prognum,

versnum, &socket, BUFSIZ, BUFSIZ» == NULL) {
perror("rpctcp_create");
exit(-l);

total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;
clnt_stat = clnt_call(client, procnum,

inproc, in, outproc, out, total_timeout);
clnt_destroy(client)
return (int)clnt_stat;

* The receiving routines
*/

iinclude <stdio.h>
iinclude <rpc/rpc.h>

main ()
{

register SVCXPRT *transp;

if «transp = svctcp_create(RPC_ANYSOCK,
BUFSIZ, BUFSIZ» == NULL) {

fprintf("svctcp_create: error\n");
exit(l);

pmap_unset(RCPPROG, RCPVERS);
if (!svc_register(transp,

RCPPROG, RCPVERS, rcp_service, IPPROTO_TCP»
fprintf(stderr, "svc_register: error\n");
exit(l);

svc_run(); /* never returns */
fprintf(stderr, "svc_run should never return\n");

rcp_service(rqstp, transp)
register struct svc_req *rqstpi
register SVCXPRT *transpi

switch (rqstp->r~roc) {
case NULLPROC:

if (svc_sendreply(transp, xdr_void, 0) == 0) {
fprintf(stderr, "err: rcp_service");
exit(l);

return;
case RCPPROC FP:

if (!svc_getargs(transp, xdr_rcp, stdout» {
svcerr_decode(transp);
return;

Revision B of 17 February 1986

5.3. Callback Procedures

Chapter 5 - More Examples 43

if (!svc_sendreply(transp, xdr_void, 0»
fprintf(stderr, "can't reply\n");
return;

exit(O);
default:

svcerr_noproc(transp);
return;

Occasionally, it is useful to have a server become a client, and make an RPC call
back the process which is its client. An example is remote debugging, where the
client is a window system program, and the server is a debugger running on the
remote machine. Most of the time, the user clicks a mouse button at the debug­
ging window, which converts this to a debugger command, and then makes an
RPC call to the server (where the debugger is actually running), telling it to exe­
cute that command. However, when the debugger hits a breakpoint, the roles are
reversed, and the debugger wants to make an rpc call to the window program, so
that it can inform the user that a breakpoint has been reached.

In order to do an RPC callback, you need a program number to make the RPC
call on. Since this will be a dynamically generated program number, it should be
in the transient range, Ox40000000 - OxSfffffff. The routine gettransient ()
returns a valid program number in the transient range, and registers it with the
portmapper. It only talks to the portmapper running on the same machine as the
gettransient () routine itself. The call to pmap_set () is a test and set
operation, in that it indivisibly tests whether a program number has already been
registered, and if it has not, then reserves it. On return, the sockp argument will
contain a socket that can be used as the argument to an svcudp _create () or
svctcp _create () call.

tinclude <stdio.h>
tinclude <rpc/rpc.h>
tinclude <sys/socket.h>

gettransient(proto, vers, sockp)
int proto, vers, *sockp;

static int prognum = Ox40000000;
int s, len, socktype;
struct sockaddr_in addr;

switch (proto) {
case IPPROTO UDP:

socktype = SOCK_DGRAM;
break;

case IPPROTO TCP:
socktype SOCK_STREAM;
break;

default:

Revision B of 17 February 1986

44 RPC Programming

fprintf(stderr, "unknown protocol type\n");
return 0;

if (*sockp == RPC_ANYSOCK)

else

if «s = socket(AF_INET, socktype, 0» < 0) {
perror("socket");
return (0);

*sockp = s;

s = *sockp;
addr.sin_addr.s_addr = 0;
addr.sin_family = AF_INET;
addr.sin-port = 0;
len = sizeof(addr);
/*

* may be already bound, so don't check for error
*/

bind(s, &addr, len);
if (getsockname(s, &addr, &len)< 0) {

perror("getsockname");
return (0);

while (!pmap_set(prognum++, vers, proto, addr.sin-port)
continue;

return (prognum-l);

The following pair of programs illustrate how to use the gettransient ()
routine. The client makes an RPC call to the server, passing it a transient pro­
gram number. Then the client waits around to receive a callback from the server
at that program number. The server registers the program EXAMPLEPROG, so
that it can receive the RPC call informing it of the callback program number.
Then at some random time (on receiving an ALRM signal in this example), it
sends a callback RPC call, using the program number it received earlier.

/*
* client
*/

#include <stdio.h>
#include <rpc/rpc.h>

int callback();
char hostname[256];

main (argc, argv)
char **argv;

int x, ans, s;
SVCXPRT *xprt;

gethostname(hostname, sizeof(hostname»;

Revision B of 17 February 1986

Chapter 5 - More Examples 45

s = RPC_ANYSOCK;
x = gettransient(IPPROTO_UDP, 1, &s);
fprintf(stderr, "client gets prognum %d\n", x);
if «xprt = svcudp_create(s» == NULL) {

fprintf(stderr, "rpc_server: svcudp_create\n");
exit(l);

/* protocol is 0 - gettransient() does registering
*/

(void)svc_register(xprt, x, 1, callback, 0);
ans = callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, xdr_int, &x, xdr_void, 0);
if (ans != RPC_SUCCESS) {

fprintf (stderr, '·call: ");
clnt-perrno(ans);
fprintf(stderr, "\n");

svc_run();
fprintf(stderr, "Error: svc run shouldn't return\nn);

callback (rqstp, transp)

/*

register struct svc_req *rqstp;
register SVCXPRT *transp;

switch (rqstp->r~roc) {
case 0:

if (!svc_sendreply(transp, xdr_void, 0»
fprintf(stderr, "err: rusersd\nn);
exit(l);

exit(O);
case 1:

if (!svc_getargs(transp, xdr_void, 0» {
svcerr_decode(transp);
exit(l);

fprintf(stderr, "client got callback\n");
if (!svc_sendreply(transp, xdr_void, 0» {

fprintf(stderr, "err: rusersd");
exit(l);

* server
*/

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/signal.h>

char *getnewprog();
char hostname[256];
int docallback();

Revision B of 17 February 1986

46 RPC Programming

int pnum;

main (argc, argv)
char **argv;

/* program number for callback routine */

gethostname(hostname, sizeof(hostname»;
registerrpc(EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);
fprintf(stderr, "server going into svc_run\n");
signal(SIGALRM, docallback);
alarm(10);
svc_run();
fprintf(stderr, "Error: svc run shouldn't return\n");

char *
getnewprog(pnump)

char *pnump;

pnum *(int *)pnump;
return NULL;

docallback ()
{

int anSi

ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0,
xdr_void, 0);

if (ans != 0) {
fprintf(stderr, "server: If);

clnt-perrno(ans);
fprintf(stderr, "\n");

~" sun Revision B of 17 February 1986
~ microsystems

A
Synopsis of RPC Routines

Synopsis ofRPC Routines ... 49

auth _destroy ()

authnone_create()

authunix_create()

A
Synopsis of RPC Routines

void
auth_destroy(auth)

AUTH *auth;

A macro that destroys the authentication information associated with auth.
Destruction usually involves deallocation of private data structures. The use of
auth is undefined after calling auth _destroy () .

[
AUTH *]

~a_u_t_h_n_o_n_e ___ c __ re __ at __ e_(_) __ ~

Creates and returns an RPC authentication handle that passes no usable authenti­
cation information with each remote procedure call.

AUTH *
authunix_create(host, uid, gid, len, aup_gids)

char *host;
int uid, gid, len, *aup_gids;

Creates and returns an RPC authentication handle that contains UNIXt authenti­
cation information. The parameter host is the name of the machine on which
the information was created; uid is the user's user ID; gid is the user's current
group ID; len and aup _gids refer to a counted array of groups to which the
user belongs. It is easy to impersonate a user.

t UNIX is a trademark of AT&T Bell Laboratories.

49 Revision B of 17 February 1986

50 RPC Programming

authunix create­
_de£au1t 0

ca11rpcO

c1nt_hroadcast()

[AUTH *
authunix_create_default()

Calls authunix_create () with the appropriate parameters.

callrpc(host,prognum,versnum,procnum,inproc,in,outproc,out)
char *host;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;

Calls the remote procedure associated with prognum, versnum, and proc­
num on the machine, host. The parameter in is the address of the procedure's
argument(s), and out is the address of where to place the result(s); inproc is
used to encode the procedure's parameters, and outproc is used to decode the
procedure's results. This routine returns zero ifit succeeds, or the value of enum
cInt_stat cast to an integer if it fails. The routine cIntyerrno () is
handy for translating failure statuses into messages. Warning: calling remote
procedures with this routine uses UDP/IP as a transport; see
cInt udp _create () for restrictions.

enum cInt stat
clnt_hroadcast(prognum, versnum, procnum,

inproc, in, outproc, out, eachresult)
u_Iong prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
resultproc_t eachresult;

Like caIIrpc (), except the call message is broadcast to all locally connected
broadcast nets. Each time it receives a response, this routine calls
eachresult (), whose form is

eachresuIt(out, addr)
char *out;
struct sockaddr in *addr;

where out is the same as out passed to cInt _broadcast () , except that the
remote procedure's output is decoded there; addr points to the address of the
machine that sent the results. If eachresul t () returns zero,
cInt _broadcast () waits for more replies; otherwise it returns with
appropriate status.

Revision B of 17 February 1986

c1nt _ ca11 ()

clnt _destroy ()

clnt _ freeres ()

clnt _geterr ()

Appendix A - Synopsis of RPC Routines 51

enum clnt stat
clnt_call(clnt, procnum, inproc, in, outproc, out, tout)

CLIENT *clnt; long procnum;
xdrproc_t inproc, outproc;
char *in, *out;
struct timeval tout;

A macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clntudp_create (). The parameter in is the address of the procedure's
argument(s), and out is the address of where to place the result(s); inproc is
used to encode the procedure's parameters, and outproc is used to decode the
procedure's results; tout is the time allowed for results to come back.

(clnt_destroy(clntl
CLIENT *clnt;

A macro that destroys the client's RPC handle. Destruction usually involves
deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt _destroy (). It is the user's responsibility to
close sockets associated with c In t.

clnt_freeres(clnt, outproc, out)
CLIENT *clnt;
xdrproc_t outproci
char *out;

A macro that frees any data allocated by the RPC/XDR system when it decoded
the results of an RPC call. The parameter out is the address of the results, and
outproc is the XDR routine describing the results in simple primitives. This
routine returns one if the results were successfully freed, and zero otherwise.

void
clnt_geterr(clnt, errp)

CLIENT *clnt;
struct rpc_err *errp;

A macro that copies the error structure out of the client handle to the structure at
address errp.

]

Revision B of 17 February 1986

52 RPC Programming

clnt-pcreateerror()

clntraw_create()

clnttcp _create ()

void
clnt-pcreateerror(s)

char *s;

Prints a message to standard error indicating why a client RPC handle could not
be created. The message is prepended with string s and a colon. Used after a
clntraw_create(),clnttcp_create(),orclntudp_create()
call.

void
clnt-perrno(stat)

enum clnt stat stat;

Prints a message to standard error corresponding to the condition indicated by
stat. Used after callrpc () .

clnt-perror(clnt, s)
CLIENT *clnt;
char *s;

Prints a message to standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon.
Used after clnt_call ().

CLIENT *
clntraw_create(prognum, versnum)

u_long prognum, versnum;

This routine creates a toy RPC client for the remote program prognum, version
versnum. The transport used to pass messages to the service is actually a
buffer within the process's address space, so the corresponding RPC server
should live in the same address space; see svcraw_create (). This allows
simulation of RPC and acquisition of RPC overheads, such as round trip times,
without any kernel interference. This routine returns NULL if it fails.

CLIENT *
clnttcp_create(addr,prognum,versnurn, sockp, sendsz, recvsz)

struct sockaddr_in *addr;
u_long prognurn, versnurn;
int *sockp;
u_int sendsz, recvsz;

This routine creates an RPC client for the remote program prognum, version
versnum; the client uses TCP/IP as a transport. The remote program is located
at Internet address *addr. If addr->sinyort is zero, then it is set to the

~\sun ,~ microsystelTlS
Revision B of 17 February 1986

clntudp_create()

qet_myaddress 0

Appendix A - Synopsis of RPC Routines 53

actual port that the remote program is listening on (the remote portmap service is
consulted for this information). The parameter * so ckp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets *sockp. Since
TCP-based RPC uses buffered 110, the user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz; values of zero choose
suitable defaults. This routine returns NULL if it fails.

CLIENT *
clntudp_create(addr, prognum, versnum, wait, sockp)

struct sockaddr_in *addr;
u_long prognum, versnum;
struct timeval wait;
int *sockp;

This routine creates an RPC client for the remote program prognum, version
versnum; the client uses use UDP/IP as a transport. The remote program is
located at Internet address *addr. If addr->sin yort is zero, then it is set
to actual port that the remote program is listening on (the remote portmap ser­
vice is consulted for this information). The parameter * soc kp is a socket; if it
is RPC _ ANYSOCK, then this routine opens a new one and sets * sockp. The
UDP transport resends the call message in intervals of wa it time until a
response is received or until the call times out. The total time for the call to time
out is specified by clnt _ call (). Warning: since UDP-based RPC messages
can only hold up to 8 Kbytes of encoded data, this transport cannot be used for
procedures that take large arguments or return huge results.

void
get_myaddress(addr)

struct sockaddr in *addr;

Stuffs the machine's IP address into *addr, without consulting the library rou­
tines that deal with fete/hosts. The port number is always set to
htons (PMAPPORT) .

struct pmaplist *
pmap_getmaps(addr)

struct sockaddr in *addri

A user interface to the portmap service, which returns a list of the current RPC
program-to-port mappings on the host located at IP address * addr. This routine
can return NULL. The command rpcinfo -p uses this routine.

Revision B of 17 February 1986

54 RPC Programming

pmap_qetport() u short
pmap_getport(addr, prognum, versnum, protocol)

struct sockaddr_in *addr;
u_Iong prognum, versnum, protocol;

A user interface to the portmap service, which returns the port number on which
waits a service that supports program number prognum, version ver snum, and
speaks the transport protocol associated with protocol. A return value of zero
means that the mapping does not exist or that the RPC system failured to contact
the remote portmap service. In the latter case, the global variable
rpc_createerr contains the RPC status.

enum clnt stat
pmap_rmtcall(addr, prognum, versnum, procnum,

inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_Iong prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
struct timeval tout;
u_Iong *portp;

A user interface to the portmap service, which instructs portmap on the host at
IP address * addr to make an RPC calIon your behalf to a procedure on that
host. The parameter *portp will be modified to the program's port number if
the procedure succeeds. The definitions of other parameters are discussed in
callrpc () and clnt_call (). This procedure should be used for a "ping"
and nothing else. See also clnt_broadcast ().

pmap_set(prognum, versnum, protocol, port)
u_Iong prognum, versnum, protocol;
u_short port;

A user interface to the portmap service, which establishes a mapping between
the triple [prognum, versnum, protocol] and port on the machine's
portmap service. The value of protocol is most likely IPPROTO _ UDP or
IPPROTO _ TCP. This routine returns one if it succeeds, zero otherwise.
Automatically done by svc_register () .

pmap_unset(prognum, versnum)
u_Iong prognum, versnum;

A user interface to the portmap service, which destroys all mappings between
the triple [prognum, versnum, *] and ports on the machine's portmap
service. This routine returns one if it succeeds, zero otherwise.

Revision B of 17 February 1986

reqisterl:pc ()

sve _destroy ()

svc fds

svc_freearqs()

Appendix A - Synopsis of RPC Routines 55

registerrpc(prognum,versnum,procnum,procname,inproc,outproc)
u_long prognum, versnum, procnum;
char * (*procname) ();
xdrproc_t inproc, outproc;

Registers procedure procname with the RPC service package. If a request
arrives for program prognum, version versnum, and procedure procnum,
procname is called with a pointer to its parameter(s); progname should return
a pointer to its static result(s); inproc is used to decode the parameters while
outproc is used to encode the results. This routine returns zero if the registra­
tion succeeded, -1 othelWise. Warning: remote procedures registered in this
form are accessed using the UDP/IP transport; see svcudp _ crea te () for res­
trictions.

(struct rpc_createerr rpc_createerr;]
A global variable whose value is set by any RPC client creation routine that does
not succeed. Use the routine clntycreateerror () to print the reason
why.

(svc_destroy(xprt)
SVCXPRT *xprt;]

A macro that destroys the RPC service transport handle, xprt. Destruction usu­
ally involves deallocation of private data structures, including xprt itself. Use
of xprt is undefined after calling this routine.

A global variable reflecting the RPC service side's read file descriptor bit mask;
it is suitable as a parameter to the select () system call. This is only of
interest if a service implementor does not call svc _ run () , but rather does his
own asynchronous event processing. This variable is read-only (do not pass its
address to select () !), yet it may change after calls to svc _getreq () or
any creation routines.

svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

A macro that frees any data allocated by the RPC/XDR system when it decoded
the arguments to a service procedure using svc _getargs (). This routine
returns one if the results were successfully freed, and zero otherwise.

]

Revision B of 17 February 1986

56 RPC Programming

svc _getarqs ()

svc_getcaller()

svc_register()

svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

A macro that decodes the arguments of an RPC request associated with the RPC
service transport handle, xprt. The parameter in is the address where the argu­
ments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns one if decoding succeeds, and zero otherwise.

struct sockaddr in
svc_getcaller(xprt)

SVCXPRT *xprt;

The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle, xprt.

[svc_getreq(rdfds)
int rdfds;

This routine is only of interest if a service implementor does not call

]
svc _run () , but instead implements custom asynchronous event processing. It
is called when the select () system call has determined that an RPC request
has arrived on some RPC socket(s); rdfds is the resultant read file descriptor
bit mask. The routine returns when all sockets associated with the value of
rdfds have been serviced.

svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u_long prognum, versnum;
void (*dispatch) ();
u_long protocol;

Associates prognum and versnum with the service dispatch procedure,
dispatch (). Ifprotocol is zero, the service is not registered with the port­
map service. Ifprotocol is non-zero, then a mapping of the triple
[prognum, versnum, protocol] to xprt->xpyort is established with
the local portmap service (generally protocol is zero, IPPROTO _ UDP or
IPPROTO_TCP). The procedure dispatch () has the following form:

dispatch (request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

The svc_register () routine returns one ifit succeeds, and zero otherwise.

~\sun ,~ microsysterns
Revision B of 17 February 1986

svc _ sendrep1y ()

svc_unreqister()

svcerr _auth ()

svcerr_decode()

Appendix A - Synopsis of RPC Routines 57

(_s_v_c-_r_u_n_o __ J

This routine never returns. It waits for RPC requests to arrive, and calls the
appropriate service procedure using svc_getreq () when one arrives. This
procedure is usually waiting for a select () system call to return.

svc_sendreply(xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

Called by an RPC service's dispatch routine to send the results of a remote pro­
cedure call. The parameter xprt is the caller's associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns one if it succeeds, zero otherwise.

void
svc_unregister(prognum, versnum)

u_long prognum, versnum;

Removes all mapping of the double [prognum, versnum] to dispatch rou­
tines, and of the triple [prognum, versnum, *] to port number.

void
svcerr_auth(xprt, why)

SVCXPRT *xprt;
enum auth_stat why;

Called by a service dispatch routine that refuses to perfonn a remote procedure
call due to an authentication error.

void
svcerr_decode(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that can't successfully decode its parameters.
See also svc _getargs () .

Revision B of 17 February 1986

58 RPC Programming

svcerr_noproc ()

svcerr _ noproq ()

svcerr-proqvers()

svcerr_systemerr()

svcerr_weakauth()

svcraw_create()

void
svcerr_noproc(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that doesn't implement the desired procedure
number the caller request.

void
svcerr_noprog(xprt)

SVCXPRT *xprt;

Called when the desired program is not registered with the RPC package. Ser­
vice implementors usually don't need this routine.

void
svcerr-progvers(xprt)

SVCXPRT *xprt;

Called when the desired version of a program is not registered with the RPC
package. Service implementors usually don't need this routine.

void
svcerr_systemerr(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine when it detects a system error not covered by
any particular protocol. For example, if a service can no longer allocate storage,
it may call this routine.

void
svcerr_weakauth(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that refuses to perform a remote procedure
call due to insufficient (but correct) authentication parameters. The routine calls
svcerr_auth(xprt,AUTH_TOOWEAK).

[SVCXPRT *
svcraw_create()

This routine creates a toy RPC service transport, to which it returns a pointer.
The transport is really a buffer within the process's address space, so the
corresponding RPC client should live in the same address space; see
clntraw_create (). This routine allows simulation ofRPC and acquisition

J

Revision B of 17 February 1986

svctcp _create ()

svcudp_create ()

Appendix A - Synopsis of RPC Routines 59

of RPC overheads (such as round trip times), without any kernel interference.
This routine returns NULL if it fails.

SVCXPRT *
svctcp_create(sock, send_buf_size, recv_buf_size)

int sock;
u_int send_buf_size, recv_buf_size;

This routine creates a TCP/IP-based RPC service transport, to which it returns a
pointer. The transport is associated with the socket so ck, which may be
RPC_ANYSOCK, in which case a new socket is created. If the socket is not
bound to a local TCP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp _ sock is the transport's socket number, and xprt­
>xp yort is the transport's port number. This routine returns NULL if it fails.
Since TCP-based RPC uses buffered liD, users may specify the size of the send
and receive buffers; values of zero choose suitable defaults.

SVCXPRT *
svcudp_create(sock)

int sock;

This routine creates a UDP/IP-based RPC service transport, to which it returns a
pointer. The transport is associated with the socket sock, which may be
RPC_ANYSOCK, in which case a new socket is created. If the socket is not
bound to a local UDP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_sock is the transport's socket number, and xprt­
>xpyort is the transport's port number. This routine returns NULL if it fails.
Warning: since UDP-based RPC messages can only hold up to 8 Kbytes of
encoded data, this transport cannot be used for procedures that take large argu­
ments or return huge results.

xdr_accepted_reply(xdrs, ar)
XDR *xdrSi
struct accepted_reply *ar;

Used for describing RPC messages, externally. This routine is useful for users
who wish to generate RPC-style messages without using the RPC package.

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrsi
char **arrpi
u_int *sizep, maxsize, elsizei
xdrproc_t elproci

A filter primitive that translates between arrays and their corresponding external
representations. The parameter ar rp is the address of the pointer to the array,

Revision B of 17 February 1986

60 RPC Programming

while sizep is the address of the element count of the array; this element cpunt
cannot exceed maxsize. The parameter elsize is the sizeof () each of the
array's elements, and elproc is an XDR filter that translates between the array
elements' C form, and their external representation. This routine returns one if it
succeeds, zero otherwise.

xdr_authunix-par.rns(xdrs, aupp)
XDR *xdrs;
struct authunix-parms *aupp;

Used for describing UNIX credentials, externally. This routine is useful for users
who wish to generate these credentials without using the RPC authentication
package.

xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

A filter primitive that translates between booleans (C integers) and their external
representations. When encoding data, this filter produces values of either one or
zero. This routine returns one if it succeeds, zero otherwise.

xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep, maxsize;

A filter primitive that translates between counted byte strings and their external
representations. The parameter sp is the address of the string pointer. The
length of the string is located at address sizep; strings cannot be longer than
maxsize. This routine returns one if it succeeds, zero otherwise.

void
xdr_callhdr(xdrs, chdr)

XDR *xdrs;
struct rpc~sg *chdr;

Used for describing RPC messages, externally. This routine is useful for users
who wish to generate RPC-style messages without using the RPC package.

Revision B of 17 February 1986

xdr_ca 1 lrosg (xdrs, crosg)
XDR *xdrs;
struct rpc_msg *cmsg;

Appendix A - Synopsis of RPC Routines 61

Used for describing RPC messages, externally. This routine is useful for users
who wish to generate RPC-style messages without using the RPC package.

xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

A filter primitive that translates between C double precision numbers and their
external representations. This routine returns one if it succeeds, zero otherwise.

xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

A filter primitive that translates between C enums (actually integers) and their
external representations. This routine returns one if it succeeds, zero otherwise.

xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

A filter primitive that translates between C floats and their external representa­
tions. This routine returns one if it succeeds, zero otherwise.

long *
xdr_inline(xdrs, len)

XDR *xdrs;
int len;

A macro that invokes the in-line routine associated with the XDR stream, xdr s.
The routine returns a pointer to a contiguous piece of the stream's buffer; len is
the byte length of the desired buffer. Note that pointer is cast to long *.
Warning: xdr _ inline () may return NULL (0) if it cannot allocate a contigu­
ous piece of a buffer. Therefore the behavior may vary among stream instances;
it exists for the sake of efficiency.

Revision B of 17 February 1986

62 RPC Programming

xdrJ>map()

xdr_int(xdrs, ip)
XDR *xdrSi
int *iPi

A filter primitive that translates between C integers and their external representa­
tions. This routine returns one if it succeeds, zero otherwise.

xdr_long(xdrs, lp)
XDR *xdrsi
long *lPi

A filter primitive that translates between C long integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_opaque(xdrs, cp, cnt)
XDR *xdrsi
char *CPi
u_int cnti

A filter primitive that translates between fixed size opaque data and its external
representation. The parameter ep is the address of the opaque object, and en t is
its size in bytes. This routine returns one if it succeeds, zero otherwise.

xdr_opaque_auth(xdrs, ap)
XDR *xdrSi
struct opaque_auth *api

Used for describing RPC messages, externally. This routine is useful for users
who wish to generate RPC-style messages without using the RPC package.

xdr-pmap(xdrs, regs)
XDR *xdrSi
struct pmap *regsi

Used for describing parameters to various portmap procedures, externally. This
routine is useful for users who wish to generate these parameters without using
the pmap interface.

Revision B of 17 February 1986

c:dr-pmap~ist ()

Appendix A - Synopsis of RPC Routines 63

xdr-pmaplist(xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

Used for describing a list of port mappings, externally. This routine is useful for
users who wish to generate these parameters without using the pma p interface.

xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

A primitive that provides pointer chasing within structures. The parameter pp is
the address of the pointer; size is the sizeof () the structure that *pp points
to; and proc is an XDR procedure that filters the structure between its C form
and its external representation. This routine returns one if it succeeds, zero other­
wise.

xdr_rejected_reply(xdrs, rr)
XDR *xdrs;
struct rejected_reply *rr;

Used for describing RPC messages, externally. This routine is useful for users
who wish to generate RPC-style messages without using the RPC package.

xdr_replymsg(xdrs, rmsg)
XDR *xdrs;
struct rpc_msg *r.msg;

Used for describing RPC messages, externally. This routine is useful for users
who wish to generate RPC style messages without using the RPC package.

xdr_short(xdrs, sp)
XDR *xdrs;
short *sp;

A filter primitive that translates between C short integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

Revision B of 17 February 1986

64 RPC Programming

xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u int maxsize;

A filter primitive that translates between C strings and their corresponding exter­
nal representations. Strings cannot be longer than maxsize. Note that sp is
the address of the string's pointer. This routine returns one if it succeeds, zero
otherwise.

xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *UPi

A filter primitive that translates between C uns igned integers and their exter­
nal representations. This routine returns one if it succeeds, zero otherwise.

xdr_u_long(xdrs, ulp)
XDR *xdrs;
unsigned long *ulp;

A filter primitive that translates between C unsigned long integers and their
external representations. This routine returns one if it succeeds, zero otherwise.

xdr_u_short(xdrs, usp)
XDR *xdrsi
unsigned short *usp;

A filter primitive that translates between C unsigned short integers and
their external representations. This routine returns one if it succeeds, zero other­
wise.

xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
int *dscmpi
char *unp;
struct xdr discrim *choices;
xdrproc_t dfaulti

A filter primitive that translates between a discriminated C union and its
corresponding external representation. The parameter ds cmp is the address of
the union's discriminant, while unp in the address of the union. This routine
returns one if it succeeds, zero otherwise.

Revision B of 17 February 198E

:dr _ wrapstring 0

=prt _register ()

cprt _ unregister ()

Appendix A - Synopsis of RPC Routines 65

(_x_d_r_-_v_01_'d_(_) __ J
This routine always returns one.

xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;

A primitive that calls xdr_string (xdrs, sp,MAXUNS IGNED) ; where
MAXUNS IGNED is the maximum value of an unsigned integer. This is handy
because the RPC package passes only two parameters XDR routines, whereas
xdr _ st ring () , one of the most frequently used primitives, requires three
parameters. This routine returns one if it succeeds, zero otherwise.

void
xprt_register(xprt)

SVCXPRT *xprt;

After RPC service transport handles are created, they should register themselves
with the RPC service package. This routine modifies the global variable
svc fds. Service implementors usually don't need this routine.

void
xprt_unregister(xprt)

SVCXPRT *xprt;

Before an RPC service transport handle is destroyed, it should unregister itself
with the RPC service package. This routine modifies the global variable
svc fds. Service implementors usually don't need this routine .

• \sun
,~ microsystems

Revision B of 17 February 1986

Index

Special Characters
*sockp,53
<rpc/clnt.h>,9
<rpc/pmap-prot . h >,18
[prognum, versnum, *}, 54,57
[prognum, versnum, protocol}, 54, 56
[prognum, versnum}, 57

A
Ada rendezvous, 3
addr,50
* addr, 52, 53, 54
addr->sin -port, 52,53
administration of RPC, 11
ALRM,44
arbitrary data types, 11
arrp,59
assigning program numbers, 11
aup _gids, 49
auth,49
auth_destroy(),49
authentication, 32
authnone_create(),49
authunix _create () , 49,50
authunix_create_default(),50
authunix_create_default(),33
authunix-parms,34

B
batching, 29
broadcast RPC, 28
broadcast RPC synopsis, 28

C
callback procedures, 43
calling side, 21
callrpc (), 3,8,9, 10, 11, 12,21,22,50,52,54
char *,10
chararr,20
CLIENT, 22,23
client side, 32
clnt,32,51,52
clnt->cl_auth, 32
clnt _broadcast () ,28,50, 54

-67-

clnt _call () , 22, 51, 52, 53, 54
clnt_destroy (), 22, 51
clnt_freeres(),51
clnt _geterr () , 51
clnt-pcreateerror(),52,55
clnt~rrno (), 28, 50, 52
clnt-perror(),52
clnt _stat, 28
clntraw_create(),52,58
clnttcp _create () ,22,23, 52
clntudp _create (), 18,22,50,51,52,53
cnt,62
cp,62

D
dispatch (), 56
done, 28
double, 61
dscmp,64

E
eachresul t () , 28, 50
elproc,6O
elsize,6O
enum,61
enum clnt_stat,9,50
errp,51
ether, 8
EXAMPLEPROG,44

F
FALSE, 19
finalp->simplep,21
finalp->strin~20,21

float, 61
fscanf (), 32

G
get_myaddress (), 53
gettransient (), 43, 44
gid,49

Index Continued

H
highest layer of RPC. 7
host, 49, 50
htons (PMAPPORT), 53

I
in, 50, 51, 56
inet,35
inetd, 35
inproc, 50,51,55,56
intermediate layer of RPC, 9
IPPROTO_TCP, 54, 56
IPPROTO_UDP, 19,54,56

L
layers of RPC, 3
len, 49, 61
librpcsvc. a, 7
long, 39,62
long *,61
lowest layer of RPC, 17

M
malloc 0, 3
maxsize, 60, 64
MAXUNSIGNED,65
memory allocation with XDR, 20
miscellaneous RPC features, 27
mount, 8

N
NULL,20, 21,31, 34,52,53,59,61
NULLPROC, 19, 35
nuser (), 10, 19
nusers, 17,19,21
&nusers,9

o
out, 50, 51, 57
outproc, 50, 51, 55, 57

p
paradigm of RPC, 4
passing arbitrary data types, 11
pmap, 28, 62, 63
pmap _getmaps () , 53
pmap_getport(),54
pmap_rmtcall(),54
pmap_set (), 43, 54
pmap _unset (), 19,54
port, 54
portmap,28
*portp,54
ports,54
pp,63
*pp, 63
proc,63
procname, 55

-68-

procnum, 50, 51,55
PROG,39
progname,55
prognum, 50, 52, 53, 54, 55, 56
program number assignment, 11
PROGVERS,39
PROGVERS_ORI~39

protocol,56

R
rcp, 40
rcvO,40
rdfds,56
receive, 59
recvsz,53
registerrpc 0,3, 9, 10, 11, 17, 18, 19,55
rnusers () , 3, 7
RPC

administration, 11
authentication, 32
batching, 29
broadcast, 28
broadcastsynops~,28
highest layer, 7
intermediate layer, 9
layers, 3
lowest layer, 17
miscellaneous features, 27
paradigm, 4
versions, 39

RPC_ANYSOCK, 18,53,59
rpc _ createerr, 54, 55
RPC_TIMEDOUT,28
rpcinfo -p,53
rCL clntcred, 34
rCL cred, 33, 34
rCLcred.oa_flavo~34

rquota,8
RUSERPROG, 10
RUSERSPROC _ BOOL, 19
RUSERSPROC_NUM, 9,10
RUSERSPROG,19
RUSERSVERS,10
RUSERSVERS_SHORT,39

s
s,52
select on the server side, 27
select (), 27,55,56,57
send, 59
sendsz,53
server side, 17, 33
short, 63
SIZE, 13,20,63
sizeof (), 60, 63
sizep,60
snd () ,40
sock,59
sockp,43

*sockp,53
sp, 60, 64
spray, 8
stat, 52
strlen 0, 14
sun! rpc, 11
svc_destroy(),55
svc_fds, 55, 65
svc_freeargs (), 20,21,55
svc _getarg s () , 19, 21, 55, 56, 57
svc_getcaller(),56
svc _getreq () , 27, 55, 56, 57
svc_register 0,19,35,54,56
svc_run (), 27, 35, 55, 56,57
svc _ sendreply () , 19, 57
svc_unregister(),57
svcerr_auth(),57
svcerr auth(xprt,AUTH_TOOWEAK),58
svcerr_decode(),57
svcerr_noproc (), 19,58
svcerr_noprog (), 58
svcerryrogvers (), 58
svcerr _ systemerr () , 35, 58
svcerr_weakauth (), 35,58
svcraw_create (), 52, 58
svctcp_create (), 18,23,43,59
svcudp _create (), 18,23,35,43,55,59
SVCXPRT,19

T
tcp, 36,40
tout, 51
TRUE, 19,28

u
udp,36
uid, 49
union, 64
unp, 64
unsigned, 64
unsigned long, 9, 11,64
unsigned short, 39, 64
user,39
using inetd, 35

V
versions, 39
versnum, 50,52, 53,54, 55, 56

w
wait, 53
write (), 29

X
XDR memory allocation, 20
xdr_accepted_reply(),59
xdr_array (), 13,20,59
xdr_authunixyarms(),60

-69-

xdr _ bool () , 60
xdr _bytes () , 13, 60
xdr_callhdr(),60
xdr_callmsg(),61
xdr_chararrl(),20
xdr_double 0, 61
xdr_enum(),61
xdr_finalexample(),20
xdr_float (), 61
xdr_inline 0,61
xdr_int (), 62
xdr_long(),62
xdr _opaque () , 62
xdr_opaque_auth(),62
xdrymap (), 62
xdrymaplist(),63
xdr _reference (), 14, 63
xdr_rejected_reply(),63
xdr_replymsg(),63
xdr _short () , 63
xdr_simple 0,12,14

Index Continued

xdr _string () , 13, 14,64, 65
xdr_string(xdrs,sp,MAXUNSIGNED);,65
xdr_u_int (), 64
xdr_u_long,9,10
xdr_u_long 0,11,64
xdr_u_short (), 64
xdr_union (), 64
xdr_varintarr(),13
xdr_void, 10
xdr_void (), 65
xdr_wrapstring(),65
xdrs,61
xprt, 55, 56, 57
xprt->xp_port, 56, 59
xprt->xp_sock,59
xprt_register(),65
xprt_unregister(),65

External Data Representation
Protocol Specification

Contents

Chapter 1 Introduction .. 3

1.1. Justification ... 3

1.2. The XDR Library ... 6

Chapter 2 XDR Library Primitives ... 11

2.1. Number Filters .. 11

2.2. floating Point Filters ... 12

2.3. Enumeration Filters .. 12

2.4. No Data ... 12

2.5. Constructed Data Type Filters ... 13

Strings .. 13

Byte Arrays .. 14

Arrays .. 14

Examples .. 15

Opaque Data .. 17

Fixed Sized Arrays ... 17

Discriminated Unions ... 18

Pointers ... 19

Pointer Semantics and XDR ... 20

2.6. Non-filter Primitives .. 21

2.7. XDR Operation Directions ... 21

Chapter 3 XDR Stream Access .. 25

3.1. Standard I/O Streams ... 25

-i-

Contents Continued

3.2. Memory Streams .. ~. 25

3.3. Record (TCPIIP) Streams ... 26

Chapter 4 XDR Stream Implementation ... 31

4.1. The XDR Object .. 31

Chapter 5 XDR Standard .. 35

5.1. Basic Block Size .. 35

5.2. Integer .. 35

5.3. Unsigned Integer .. 35

5.4. Enumerations ... 36

5.5. Booleans ... 36

5.6. Hyper Integer and Hyper Unsigned .. 36

5.7. Floating Point and Double Precision .. 36

5.8. Opaque Data ... 37

5.9. Counted Byte Strings .. 37

5.10. Fixed Arrays .. 38

5.11. Counted Arrays .. 38

5.12. Structures ... 38

5.13. Discriminated Unions ... 38

5.14. Missing Specifications ... 39

5.15. Library Primitive / XDR Standard Cross Reference 39

Chapter 6 Advanced Topics ... 43

6.1. Linked Lists .. 43

6.2. The Record Marking Standard ... 47

Appendix A Synopsis of XDR Routines .. 51

-ii-

1
Introduction

Introduction ... 3

1.1. Justification ... 3

1.2. The XDR Library ... 6

1.1. Justification

1
Introduction

This manual describes library routines that allow a C programmer to describe
arbitrary data structures in a machine-independent fashion. The eXternal Data
Representation (XDR) standard is the backbone of Sun's Remote Procedure Call
package, in the sense that data for remote procedure calls is transmitted using the
standard. XDR library routines should be used to transmit data that is accessed
(read or written) by more than one type of machine.

This manual contains a description of XDR library routines, a guide to accessing
currently available XDR streams, information on defining new streams and data
types, and a formal definition of the XDR standard. XDR was designed to work
across different languages, operating systems, and machine architectures. Most
users (particularly RPC users) only need the infonnation in sections 2 and 3 of
this document. Programmers wishing to implement RPC and XDR on new
machines will need the information in sections 4 through 6. Advanced topics,
not necessary for all implementations, are covered in section 7.

On Sun systems, C programs that want to use XDR routines must include the file
<rpc / rpc . h>, which contains all the necessary interfaces to the XDR system.
Since the C library libc . a contains all the XDR routines, compile as normal.

(% cc program. c

Consider the following two programs, wr iter:

#include <stdio.h>

main ()
{

long i;

for (i

/* writer.c */

o ; i < 8; i ++) {

J

if (fwrite«char *)&i, sizeof(i), 1, stdout) != 1) {
fprintf(stderr, "failed!\nn);
exit(I);

~\sun ~ microsystems
3 Revision B of 17 February 1986

4 XDR Protocol Spec

and reader:

finclude <stdio.h>

main() /* reader.c */
{

long i, j;

for (j = 0; j < 8; j ++) {
if (fread((char *) &i, sizeof (i), 1, stdin) != 1) {

fprintf(stderr, nfailed!\nn);
exit(I);

printf("%ld ", i);

printf("\nn);

The two programs appear to be portable, because (a) they pass lint checking,
and (b) they exhibit the same behavior when executed on two different hardware
architectures, a Sun and a V AX.

Piping the output of the writer program to the reader program gives identi­
cal results on a Sun or a V AX.:J:

sun% writer reader
01234 5 6 7
sun%

vax% writer I reader
012 3 4 5 6 7
vax%

With the advent of local area networks and Berkeley's 4.2 BSD UNIXt came the
concept of "network pipes" - a process produces data on one machine, and a
second process consumes data on another machine. A network pipe can be con­
structed with writer and reader. Here are the results if the first produces
data on a Sun, and the second consumes data on a V AX.

sun% writer I rsh vax reader
o 16777216 33554432 50331648 67108864 83886080 100663296
117440512
sun%

Identical results can be obtained by executing writer on the VAX and
reader on the Sun. These results occur because the byte ordering of long

* VAX is a trademark of Digital Equipment Corporation.

t UNIX is a trademark of AT&T Bell Laboratories.

Revision B of 17 February 198(i

Chapter 1 - Introduction 5

integers differs between the V AX and the Sun, even though word size is the
same. Note that 16777216 is 224 - when four bytes are reversed, the 1 winds up
in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for port­
able data. Programs can be made data-portable by replacing the read () and
write () calls with calls to an XDR library routine xdr_long (), a filter that
knows the standard representation of a long integer in its external form. Here are
the revised versions of wr iter:

*include <stdio.h>
include <rpc/rpc.h> / xdr is a sub-library of rpc */

main ()
{

/* writer.c */

XDR xdrs;
long i;

xdrstdio_create(&xdrs, stdout, XDR ENCODE);
for (i = 0; i < 8; i ++) {

if (!xdr_long(&xdrs, &i» {
fprintf(stderr, "failed!\n");
exit(l);

and reader:

*include <stdio.h>
include <rpc/rpc.h> / xdr is a sub-library of rpc */

main ()
{

/* reader.c */

XDR xdrs;
long i, j;

xdrstdio_create(&xdrs, stdin, XDR_DECODE);
for (j = 0; j < 8; j++) {

if (!xdr_long(&xdrs, &i»
fprintf(stderr, "failed!\n");
exit(l);

printf("%ld ", i);

printf("\n");

The new programs were executed on a Sun, on a V AX, and from a Sun to a
V AX; the results are shown below.

Revision B of 17 February 1986

6 XDR Protocol Spec

1.2. The XDR Library

sun% writer I reader
012 3 4 5 6 7
sun%

vax% writer I reader
012 3 4 5 6 7
vax%

sun% writer I rsh vax reader
012 345 6 7
sun%

Dealing with integers is just the tip of the portable-data iceberg. Arbitrary data
structures present portability problems, particularly with respect to alignment and
pointers. Alignment on word boundaries may cause the size of a structure to
vary from machine to machine. Pointers are convenient to use, but have no
meaning outside the machine where they are defined.

The XDR library solves data portability problems. It allows you to write and
read arbitrary C constructs in a consistent, specified, well-documented manner.
Thus, it makes sense to use the library even when the data is not shared among
machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of bytes),
structures, unions, and arrays, to name a few. Using more primitive routines, you
can write your own specific XDR routines to describe arbitrary data structures,
including elements of arrays, arms of unions, or objects pointed at from other
structures. The structures themselves may. contain arrays of arbitrary elements,
or pointers to other structures.

Let's examine the two programs more closely. There is a family ofXDR stream
creation routines in which each member treats the stream of bits differently. In
our example, data is manipulated using standard I/O routines, so we use
xdrstdio _create (). The parameters to XDR stream creation routines vary
according to their function. In our example, xdrstdio_create () takes a
pointer to an XDR structure that it initializes, a pointer to a FILE that the input
or output is performed on, and the operation. The operation may be
XDR_ENCODE for serializing in the writer program, or XDR_DECODE for
deserializing in the reader program.

Note: RPC clients never need to create XDR streams; the RPC system itself
creates these streams, which are then passed to the clients.

The xdr _long () primitive is characteristic of most XDR library primitives
and all client XDR routines. First, the routine returns FALSE (0) ifit fails, and
TRUE (1) if it succeeds. Second, for each data type, xxx, there is an associated
XDR routine of the form:

Revision B of 17 February 1986

xdr_xxx(xdrs, fp)
XDR *xdrsi
xxx *fPi

Chapter 1 - Introduction 7

In our case, xxx is long, and the corresponding XDR routine is a primitive,
xdr_long. The client could also define an arbitrary structure xxx in which
case the client would also supply the routine xdr _ xxx, describing each field by
calling XDR routines of the appropriate type. In all cases the first parameter,
xdr s can be treated as an opaque handle, and passed to the primitive routines.

XDR routines are direction independent; that is, the same routines are called to
serialize or deserialize data. This feature is critical to software engineering of
portable data. The idea is to call the same routine for either operation - this
almost guarantees that serialized data can also be deserialized. One routine is
used by both producer and consumer of networked data. This is implemented by
always passing the address of an object rather than the object itself - only in the
case of deserialization is the object modified. This feature is not shown in our
trivial example, but its value becomes obvious when nontrivial data structures are
passed among machines. If needed, you can obtain the direction of the XDR
operation. See section 3.7 for details.

Let's look at a slightly more complicated example. Assume that a person's gross
assets and liabilities are to be exchanged among processes. Also assume that
these values are important enough to warrant their own data type:

struct gnumbers {
long g_assetsi
long g_liabilitiesi

} i

The corresponding XDR routine describing this structure would be:

(bool t i* TRUE is success, FALSE is failure */ I
xdr_gnumbers(xdrs, gp)

XDR *xdrsi
struct gnurnbers *gp;

if (xdr_long(xdrs, &gp->g_assets) &&
xdr_long(xdrs, &gp->g_liabilities»
return (TRUE) i

return (FALSE) ;

Note that the parameter xdr s is never inspected or modified; it is only passed on
to the subcomponent routines. It is imperative to inspect the return value of each
XDR routine call, and to give up immediately and return FALSE if the subrou­
tine fails .

• \sun ~~ microsystems
Revision B of 17 February 1986

8 XDR Protocol Spec

This example also shows that the type bool_ t is declared as an integer whose
only values are TRUE (1) and FALSE (0). This document uses the following
definitions:

#define bool t int
#define TRUE 1
#define FALSE 0

#define enum t int /* enum t used for generic enums */

Keeping these conventions in mind, xdr_gnumbers () can be rewritten as fol­
lows:

xdr_gnumbers(xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;

return (xdr_long(xdrs, &gp->g_assets) &&
xdr_long(xdrs, &gp->g_liabilities»;

This document uses both coding styles.

~\sun ~~ microsystems
Revision B of 17 February 1986

2
XDR Library Primitives

XDR Library Primitives .. 11

2.1. Number Filters .. 11

2.2. Floating Point Filters ... 12

2.3. Enumeration Filters .. 12

2.4. No Data ... 12

2.5. Constructed Data Type Filters ... 13

Strings .. 13

Byte Arrays .. 14

Arrays .. 14

Examples .. 15

Opaque Data .. 17

Fixed Sized Arrays ... 17

Discriminated Unions ... 18

Pointers ... 19

Pointer Semantics and XDR ... 20

2.6. Non-filter Primitives .. 21

2.7. XDR Operation Directions ... 21

2.1. Number Filters

2
XDR Library Primitives

This section gives a synopsis of each XDR primitive. It starts with basic data
types and moves on to constructed data types. Finally, XDR utilities are dis­
cussed. The interface to these primitives and utilities is defined in the include file
<rpc/xdr. h>, automatically included by <rpc/rpc. h>.

The XDR library provides primitives to translate between numbers and their
corresponding external representations. Primitives cover the set of numbers in:

[signed ,unsigned] * [short ,int ,long]

Specifically, the six primitives are:

bool_t xdr_int(xdrs, ip)
XDR *xdrsi
int *iPi

bool_t xdr_u_int(xdrs, up)
XDR *xdrsi
unsigned *UPi

bool_t xdr_long(xdrs, lip)
XDR *xdrsi
long *lipi

bool_t xdr_u_long(xdrs, lup)
XDR *xdrsi
u_long *lUPi

bool_t xdr_short(xdrs, sip)
XDR *xdrsi
short *sip;

bool_t xdr_u_short(xdrs, sup)
XDR *xdrsi
u_short *SUPi

The first parameter, xdr s, is an XDR stream handle. The second parameter is
the address of the number that provides data to the stream or receives data from
it. All routines return TRUE if they complete successfully, and FALSE other­
wise.

~~sun ~ microsystems
11 Revision B of 17 February 1986

12 XDR Protocol Spec

2.2. Floating Point Filters

2.3. Enumeration Filters

2.4. No Data

The XDR library also provides primitive routines for C' s floating point types:

bool_t xdr_float(xdrs, fp)
XDR *xdrsi
float *fPi

bool_t xdr_double(xdrs, dp)
XDR *xdrsi
double *dPi

The first parameter, xdr s is an XDR stream handle. The second parameter is
the address of the floating point number that provides data to the stream or
receives data from it All routines return TRUE if they complete successfully,
and FALSE otherwise.

Note: Since the numbers are represented in IEEE floating point, routines may fail
when decoding a valid IEEE representation into a machine-specific representa­
tion, or vice-versa.

The XDR library provides a primitive for generic enumerations. The primitive
assumes that a C en urn has the same representation inside the machine as a C
integer. The boolean type is an important instance of the enum. The external
representation of a boolean is always one (TRUE) or zero (FALSE).

#define bool tint
#define FALSE 0
#define TRUE 1

#define enum tint

bool_t xdr_enum(xdrs, ep)
XDR *xdrsi
enum_t *epi

bool_t xdr_bool(xdrs, bp)
XDR *xdrsi
bool_t *bPi

The second parameters ep and bp are addresses of the associated type that pro­
vides data to, or receives data from, the stream xdrs. The routines return TRUE
if they complete successfully, and FALSE otherwise.

Occasionally, an XDR routine must be supplied to the RPC system, even when
no data is passed or required. The library provides such a routine:

bool t xdr_void()i /* always returns TRUE */

~~ sun Revision B of 17 February 1986
~ microsystems

2.5. Constructed Data Type
Filters

Strings

Chapter 2 - XDR Library Primitives 13

Constructed or compound data type primitives require more parameters and per­
form more complicated functions then the primitives discussed above. This sec­
tion includes primitives for strings, arrays, unions, and pointers to structures.

Constructed data type primitives may use memory management. In many cases,
memory is allocated when deserializing data with XDR_DECODE. Therefore, the
XDR package must provide means to deallocate memory. This is done by an
XDR operation, XDR _FREE. To review, the three XDR directional operations
are XDR_ENCODE, XDR_DECODE, and XDR_FREE.

In C, a string is defined as a sequence of bytes terminated by a null byte, which is
not considered when calculating string length. However, when a string is passed
or manipulated, a pointer to it is employed. Therefore, the XDR library defines a
string to be a char *, and not a sequence of characters. The external represen­
tation of a string is drastically different from its internal representation. Exter­
nally, strings are represented as sequences of ASCII characters, while internally,
they are represented with character pointers. Conversion between the two
representations is accomplished with the routine xdr_string () :

bool_t xdr_string(xdrs, sp, maxlength)
XDR *xdrs;
char **sp;
u_int maxlength;

The first parameter xdr s is the XDR stream handle. The second parameter sp
is a pointer to a string (type char **). The third parametermaxlength
specifies the maximum number of bytes allowed during encoding or decoding; its
value is usually specified by a protocol. For example, a protocol specification
may say that a file name may be no longer than 255 characters. The routine
returns FALSE if the number of characters exceeds maxlength, and TRUE if it
doesn't.

The behavior of xdr _ str ing () is similar to the behavior of other routines dis­
cussed in this section. The direction XDR ENCODE is easiest to understand. The
parameter sp points to a string of a certain length; if it does not exceed max­
length, the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the incoming
string is determined; it must not exceed maxlength. Next sp is dereferenced;
if the the value is NULL, then a string of the appropriate length is allocated and
* sp is set to this string. If the original value of * sp is non-null, then the XDR
package assumes that a target area has been allocated, which can hold strings no
longer than maxlength. In either case, the string is decoded into the target
area. The routine then appends a null character to the string.

In the XDR _FREE operation, the string is obtained by dereferencing sp. If the
string is not NULL, it is freed and * sp is set to NULL. In this operation,
xdr_string ignores the maxlength parameter.

~~sun ~~ microsystems
Revision B of 17 February 1986

14 XDR Protocol Spec

Byte Arrays

Arrays

Often variable-length arrays of bytes are preferable to strings. Byte arrays differ
from strings in the following three ways: 1) the length of the array (the byte
count) is explicitly located in an unsigned integer, 2) the byte sequence is not ter­
minated by a null character, and 3) the external representation of the bytes is the
same as their internal representation. The primitive xdr _byte s () converts
between the internal and external representations of byte arrays:

bool_t xdr_bytes(xdrs, bpp, lp, maxlength)
XDR *xdrs;
char **bpp;
ll_int *lp;
ll_int maxlength;

The usage of the first, second and fourth parameters are identical to the first,
second and third parameters of xdr _ st ring () , respectively. The length of
the byte area is obtained by dereferencing lp when serializing; *lp is set to the
byte length when deserializing.

The XDR library package provides a primitive for handling arrays of arbitrary
elements. The xdr _byte s () routine treats a subset of generic arrays, in which
the size of array elements is known to be 1, and the external description of each
element is built-in. The generic array primitive, xdr_array () requires param­
eters identical to those of xdr _bytes () plus two more: the size of array ele­
ments, and an XDR routine to handle each of the elements. This routine is called
to encode or decode each element of the array.

bool t
xdr_array(xdrs, ap, Ip, maxlength, elementsiz, xdr_element)

XDR *xdrs;
char **ap;
ll_int *lp;
ll_int maxlength;
ll_int elementsiz;
bool_t (*xdr_element) ();

The parameter ap is the address of the pointer to the array. If *ap is NULL

when the array is being deserialized, XDR allocates an array of the appropriate
size and sets *ap to that array. The element count of the array is obtained from
* Ip when the array is serialized; * lp is set to the array length when the array is
deserialized. The parameter maxI engt h is the maximum number of elements
that the array is allowed to have; elementsiz is the byte size of each element
of the array (the C function sizeof () can be used to obtain this value). The
routine xdr _element is called to serialize, deserialize, or free each element of
the array .

• sun
~ mlcrosystems

Revision B of 17 February 1986

Examples

Chapter 2 - XDR Library Primitives 15

Before defining more constructed data types, it is appropriate to present three
examples.

Example A

A user on a networked machine can be identified by (a) the machine name, such
as krypton: see gethostname (3); (b) the user's UID: see geteuid (2); and (c) the
group numbers to which the user belongs: see getgroups (2). A structure with
this infonnation and its associated XDR routine could be coded like this:

struct netuser {

} ;

char *nu_machinename;
int nu_uid;
u int
int

nu_glen;
*nu_gids;

#define NLEN 255
#define NGRPS 20

/* machine names < 256 chars */
/* user can't be in > 20 groups */

bool t
xdr_netuser(xdrs, nup)

XDR *xdrs;
struct netuser *nupi

return (xdr_string(xdrs, &nup->nu_machinename, NLEN) &&
xdr_int(xdrs, &nup->nu_uid) &&
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen, NGRPS,
sizeof (int), xdr_int»;

ExampleB

A party of network users could be implemented as an array of net user struc­
ture. The declaration and its associated XDR routines are as follows:

struct party {
u_int p_len;
struct netuser *p_nusers;

} ;

#define PLEN 500 /* max number of users in a party */

bool t
xdr-party(xdrs, pp)

XDR *xdrs;
struct party *pp;

return (xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,
sizeof (struct netuser), xdr_netuser»;

ExampleC

Revision B of 17 February 1986

16 XDR Protocol Spec

The well-known parameters to main () , argc and argv can be combined into
a structure. An array of these structures can make up a history of commands.
The declarations and XDR routines might look like:

struct cmd {

} i

u_int c_argci
char **c_argvi

fdefine ALEN 1000
fdefine NARGC 100

/* args cannot be > 1000 chars */
/* commands cannot have > 100 args */

struct history {
u_int h_leni
struct cmd *h_cmdsi

} i

fdefine NCMDS 75 /* history is no more than 75 commands */

bool t
xdr_wrap_string(xdrs, sp)

XDR *xdrsi
char **SPi

return (xdr_string(xdrs, sp, ALEN))i

bool t
xdr_cmd(xdrs, cp)

XDR *xdrsi
struct cmd *CPi

return (xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,
sizeof (char *), xdr_wrap_string));

bool t
xdr_history(xdrs, hp)

XDR *xdrsi
struct history *hPi

return (xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,
sizeof (struct cmd), xdr_cmd);

The most confusing part of this example is that the routine
xdr_wrap_string() is needed to package the xdr_string () routine,
because the implementation of xdr _ arr a y () only passes two parameters to
the array element description routine; xdr_wrap_string () supplies the third
parameter to xdr_string ().

By now the recursive nature of the XDR library should be obvious. Let's con­
tinue with more constructed data types.

Revision B of 17 February 198f

Opaque Data

Fixed Sized Arrays

Chapter 2 - XDR Library Primitives 17

In some protocols, handles are passed from a server to client. The client passes
the handle back to the server at some later time. Handles are never inspected by
clients; they are obtained and submitted. That is to say, handles are opaque. The
primitive xdr _opaque () is used for describing fixed sized, opaque bytes.

bool_t xdr_opaque(xdrs, p, len)
XDR *xdrs;
char *p;
u_int len;

The parameter p is the location of the bytes; Ie n is the number of bytes in the
opaque object. By definition, the actual data contained in the opaque object are
not machine portable.

The XDR library does not provide a primitive for fixed-length arrays (the primi­
tive xdr_array () is for varying-length arrays). Example A could be rewritten
to use fixed-sized arrays in the following fashion:

idefine NLEN 255
idefine NGRPS 20

/* machine names must be < 256 chars */
/* user can't belong to > 20 groups */

struct netuser {

} ;

char *nu_machinename;
int nu_uid;
int nu_gids[NGRPS];

bool t
xdr_netuser(xdrs, nup)

XDR *xdrs;
struct netuser *nupi

int ii

if (!xdr_string(xdrs, &nup->nu_machinename, NLEN»
return(FALSE)i

if (!xdr_int(xdrs, &nup->nu_uid»
return(FALSE)i

for (i = 0; i < NGRPS; i++) {
if (!xdr_int(xdrs, &nup->nu_gids[i]»

return(FALSE)i

return(TRUE);

Exercise: Rewrite example A so that it uses varying-length arrays and so that the
netuser structure contains the actual nu_gids array body as in the example
above.

Revision B of 17 February 1986

18 XDR Protocol Spec

Discriminated Unions The XDR library supports discriminated unions. A discriminated union is a C
union and an enum t value that selects an "arm" of the union.

struct xdr_discrim {
enum t value;
bool t (*proc) ();

} ;

bool t xdr_union(xdrs, dscmp, unp, arms, defaultarm)
XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr discrim *arms;
bool_t (*defaultarm) (); /* may equal NULL */

First the routine translates the discriminant of the union located at *dscmp. The
discriminam is always an enum_t. Next the union located at *unp is
translated. The parameter arms is a pointer to an array of xdr _ discrim
structures. Each structure contains an order pair of [value, proc]. If the
union's discriminant is equal to the associated value, then the proc is called to
translate the union. The end of the xdr_discrim structure array is denoted by
a routine of value NULL (0). If the discriminant is not found in the arms array,
then the defaultarm procedure is called if it is non-null; otherwise the routine
returns FALSE.

ExampleD

Suppose the type of a union may be integer, character pointer (a string), or a
gnurnbers structure. Also, assume the union and its current type are declared
in a structure. The declaration is:

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u_tag {
enum utype utype;
union {

/* the union's discriminant */

} ;

int ivaI;
char *pval;
struct gnumbers gn;

uval;

The following constructs and XDR procedure (de)serialize the discriminated
union:

Revision B of 17 February 198~

Pointers

Chapter 2 - XDR Library Primitives 19

struct xdr_discrim u_tag_arms[4]
INTEGER, xdr_int },
GNUMBERS, xdr_gnumbers }
STRING, xdr_wrap_string },
__ dontcare __ , NULL }

/* always terminate arms with a NULL xdr-proc */

bool t
xdr_u_tag(xdrs, utp)

XDR *xdrsi
struct u_tag *utPi

return (xdr_union (xdrs, &utp->utype, &utp->uval,
u_tag_arms, NULL));

The routine xdr _gnumber s () was presented in Section 2;
xdr _ wr ap _ str ing () was presented in example C. The default arm parame­
ter to xdr _union () (the last parameter) is NULL in this example. Therefore
the value of the union's discriminant may legally take on only values listed in the
u _ tag_arms array. This example also demonstrates that the elements of the
arm's array do not need to be sorted.

It is worth pointing out that the values of the discriminant may be sparse, though
in this example they are not. It is always good practice to assign explicitly
integer values to each element of the discriminant's type. This practice both
documents the external representation of the discriminant and guarantees that dif­
ferent C compilers emit identical discriminant values.

Exercise: Implement xdr _union () using the other primitives in this section.

In C it is often convenient to put pointers to another structure within a structure.
The primitive xdr _reference () makes it easy to serialize, deserialize, and
free these referenced structures.

bool_t xdr_reference(xdrs, pp, size, proc)
XDR *xdrsi
char **PPi
u_int ssizei
bool_t (*proc) ()i

Parameter pp is the address of the pointer to the structure; parameter s s i z e is
the size in bytes of the structure (use the C function sizeof () to obtain this
value); and proc is the XDR routine that describes the structure. When decod­
ing data, storage is allocated if *pp is NULL.

There is no need for a primitive xdr _ struct () to describe structures within
structures, because pointers are always sufficient.

Revision B of 17 February 1986

20 XDR Protocol Spec

Pointer Semantics and XDR

Exercise: Implement xdr_reference () using xdr_array (). Warning:
xdr_reference () and xdr_array () are NOT interchangeable external
representations of data.

ExampleE

Suppose there is a structure containing a person's name and a pointer to a
gnumbers structure containing the person's gross assets and liabilities. The
construct is:

struct pgn
char *namei
struct gnumbers *gnpi

} i

The corresponding XDR routine for this structure is:

bool t
xdr-pgn(xdrs, pp)

XDR *xdrsi
struct pgn *PPi

if (xdr_string(xdrs, &pp->name, NLEN) &&
xdr_reference(xdrs, &pp->gnp,
sizeof(struct gnumbers), xdr_gnumbers»

return(TRUE)i
return(FALSE)i

In many applications, C programmers attach double meaning to the values of a
pointer. Typically the value NULL (or zero) means data is not needed, yet some
application-specific interpretation applies. In essence, the C programmer is
encoding a discriminated union efficiently by overloading the interpretation of
the value of a pointer. For instance, in example E a NULL pointer value for gnp
could indicate that the person's assets and liabilities are unknown. That is, the
pointer value encodes two things: whether or not the data is known; and if it is
known, where it is located in memory. Linked lists are an extreme example of
the use of application-specific pointer interpretation.

The primitive xdr_reference () cannot and does not attach any special
meaning to a null-value pointer during serialization. That is, passing an address
ofa pointer whose value is NULL to xdr_reference () when serialing data
will most likely cause a memory fault and, on UNIX, a core dump for debugging.

It is the explicit responsibility of the programmer to expand non-dereference able
pointers into their specific semantics. This usually involves describing data with
a two-anned discriminated union. One ann is used when the pointer is valid; the
other is used when the pointer is invalid (NULL). Section 7 has an example
(linked lists encoding) that deals with invalid pointer interpretation.

Revision B of 17 February 1986

2.6. Non-filter Primitives

2.7. XDR Operation
Directions

Chapter 2 - XDR Library Primitives 21

Exercise: After reading Section 7, return here and extend example E so that it can
correctly deal with null pointer values.

Exercise: Using the xdr _union () , xdr _ref erence () and xdr_ void ()
primitives, implement a generic pointer handling primitive that implicitly deals
with NULL pointers. The XDR library does not provide such a primitive because
it does not want to give the illusion that pointers have meaning in the external
world.

XDR streams can be manipulated with the primitives discussed in this section.

u_int xdr_getpos(xdrs)
XDR *xdrs;

bool_t xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

xdr_destroy(xdrs)
XDR *xdrs;

The routine xdr _get po s () returns an unsigned integer that describes the
current position in the data stream. Warning: In some XDR streams, the returned
value of xdr _get po s () is meaningless; the routine returns a -1 in this case
(though -1 should be a legitimate value).

The routine xdr_setpos () sets a stream position to pos. Warning: In some
XDR streams, setting a position is impossible; in such cases, xdr _ setpos ()
will return FALSE. This routine will also fail if the requested position is out-of­
bounds. The definition of bounds varies from stream to stream.

The xdr _destroy () primitive destroys the XDR stream. Usage of the stream
after calling this routine is undefined.

At times you may wish to optimize XDR routines by taking advantage of the
direction of the operation - XDR_ENCODE, XDR_DECODE, or XDR_FREE.
The value xdr s ->x _ op always contains the direction of the XDR operation.
Programmers are not encouraged to take advantage of this information. There­
fore, no example is presented here. However, an example in Section 7 demon­
strates the usefulness of the xdr s - >x _ op field.

Revision B of 17 February 1986

3
XDR Stream Access

IDR Stream Access ... 25

3.1. Standard 110 Streams ... 25

3.2. Memory Streams .. 25

3.3. Record (TCP/IP) Streams ... 26

3.1. Standard I/O Streams

3.2. Memory Streams

3
XDR Streatn Access

An XDR stream is obtained by calling the appropriate creation routine. These
creation routines take arguments that are tailored to the specific properties of the
stream.

Streams currently exist for (de)serialization of data to or from standard 110 FILE
streams, TCP/IP connections and UNIX files, and memory. Section 5 documents
the XDR object and how to make new XDR streams when they are required.

XDR streams can be interfaced to standard 110 using the
xdrstdio_create () routine as follows:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr streams part of rpc */

void
xdrstdio_create(xdrs, fp, x_op)

XDR *xdrsi
FILE *fPi
enum xdr_op X_OPi

The routine xdrstdio _create () initializes an XDR stream pointed to by
xdrs. The XDR stream interfaces to the standard IJO library. Parameter fp is
an open file, and x _ op is an XDR direction.

Memory streams allow the streaming of data into or out of a specified area of
memory:

#include <rpc/rpc.h>

void
xdrmem_create(xdrs, addr, len, x_op)

XDR *xdrsi
char *addri
u_int leni
enum xdr_op X_OPi

The routine xdrmem _ crea te () initializes an XDR stream in local memory.
The memory is pointed to by parameter addr; parameter len is the length in
bytes of the memory. The parameters xdr s and x _ op are identical to the

25 Revision B of 17 February 1986

26 XDR Protocol Spec

3.3. Record (TCPIIP) Streams

corresponding parameters of xdrstdio _create () . Currently, the UDP/IP
implementation of RPC uses xdrmem_ crea te (). Complete call or result
messages are built in memory before calling the sendto () system routine.

A record stream is an XDR stream built on top of a record marking standard that
is built on top of the UNIX file or 4.2 BSD connection interface.

iinclude <rpc/rpc.h>

xdrrec_create(xdrs,

/* xdr streams part of rpc */

sendsize, recvsize, iohandle, readproc, writeproc)
XDR *xdrSi
u_int sendsize, recvsize;
char *iohandle;
int (*readproc) (), (*writeproc) () i

The routine xdrrec_create () provides an XDR stream interface that allows
for a bidirectional, arbitrarily long sequence of records. The contents of the
records are meant to be data in XDR form. The stream's primary use is for inter­
facing RPC to TCP connections. However, it can be used to stream data into or
out of nonnal UNIX files.

The parameter xdr s is similar to the corresponding parameter described above.
The stream does its own data buffering similar to that of standard I/O. The
parameters sendsize and recvsize detennine the size in bytes of the output
and input buffers, respectively; if their values are zero (0), then predetennined
defaults are used. When a buffer needs to be filled or flushed, the routine read­
proc or wri teproc is called, respectively. The usage and behavior of these
routines are similar to the UNIX system calls read () and wr i te (). However,
the first parameter to each of these routines is the opaque parameter iohandle.
The other two parameters (buf and nbytes) and the results (byte count) are
identical to the system routines. If xxx is readproc or writeproc, then it
has the following form:

/*'
* returns the actual number of bytes transferred.
* -1 is an error
*/

int
xxx(iohandle, buf, len)

char *iohandlei
char *buf;
int nbytes;

The XDR stream provides means for delimiting records in the byte stream. The
implementation details of delimiting records in a stream are discussed in appen­
dix 1. The primitives that are specific to record streams are as follows:

Revision B of 17 February 1986

bool t
xdrrec_endofrecord(xdrs, flushnow)

XDR *xdrs;
bool_t flushnow;

bool t
xdrrec_skiprecord(xdrs)

XDR *xdrs;

bool t
xdrrec_eof(xdrs)

XDR *xdrs;

Chapter 3 - XDR Stream Access 27

The routine xdrrec _ endofrecord () causes the current outgoing data to be
marked as a record. If the parameter flushnow is TRUE, then the stream's
writeproc () will be called; otherwise, writeproc () will be called when
the output buffer has been filled.

The routine xdrrec _ skiprecord () causes an input stream's position to be
moved past the current record boundary and onto the beginning of the next
record in the stream.

If there is no more data in the stream's input buffer, then the routine
xdrrec _ eof () returns TRUE. That is not to say that there is no more data in
the underlying file descriptor.

Revision B of 17 February 1986

4
XDR Stream Implementation

XDR Stream Implementation .. 31

4.1. The XDR Object .. 31

4.1. The XDR Object

4
XDR Stream Implementation

This section provides the abstract data types needed to implement new instances
of XDR streams.

The following structure defines the interface to an XDR stream:

enum xdr_op { XDR_ENCODE=O, XDR_DECODE=l, XDR_FREE=2 };

typedef struct {
enum xdr_op x_op; /* operation; fast added param */
struct xdr_ops {

bool t (*x_getlong) (); /* get long from stream *1
bool t (*x-putlong) (); /* put long to stream */
bool t (*x_getbytes) (); /* get bytes from stream *V
bool t (*x-putbytes) (); /* put bytes to stream */
u int (*x_getpostn) (); /* return stream offset */
bool t (*x_setpostn) (); /* reposition offset */
caddr t (*x_inline) (); /* ptr to buffered data */
VOID (*x_destroy) (); /* free private area */

*x_ops;
caddr_t x-public;
caddr_t x-private;
caddr t x_base;

/* users' data */
/* pointer to private data */
/* private for position info */
/* extra private word */ int x_handy;

XDR;

The x_ op field is the current operation being performed on the stream. This
field is important to the XDR primitives, but should not affect a stream's imple­
mentation. That is, a stream's implementation should not depend on this value.
The fields xyrivate, x_base, and x_handy are private to the particular
stream's implementation. The field x_public is for the XDR client and should
never be used by the XDR stream implementations or the XDR primitives.

Macros for accessing operations x_getpostn (), x_setpostn (), and
x_destroy () were defined in Section 3.6. The operation x_inline () takes
two parameters: an XDR *, and an unsigned integer, which is a byte count. The
routine returns a pointer to a piece of the stream's internal buffer. The caller can
then use the buffer segment for any purpose. From the stream's point of view,
the bytes in the buffer segment have been consumed or put. The routine may
return NULL if it cannot return a buffer segment of the requested size. (The

31 Revision B of 17 February 1986

32 XDR Protocol spec

x _ inline routine is for cycle squeezers. Use of the resulting buffer is not
data-portable. Users are encouraged not to use this feature.)

The operations x_getbytes () and x_putbytes () blindly get and put
sequences of bytes from or to the underlying stream; they return TRUE if they are
successful, and FALSE otherwise. The routines have identical parameters
(replace xxx):

bool t
xxxbytes(xdrs, buf, bytecount)

XDR *xdrs;
char *buf;
u_int bytecount;

The operations x_get long () and xyutlong () receive and put long
numbers from and to the data stream. It is the responsibility of these routines to
translate the numbers between the machine representation and the (standard)
external representation. The UNIX primitives htonl () and ntohl () can be
helpful in accomplishing this. Section 6 defines the standard representation of
numbers. The higher-level XDR implementation assumes that signed and
unsigned long integers contain the same number of bits, and that nonnegative
integers have the same bit representations as unsigned integers. The routines
return TRUE if they succeed, and FALSE otherwise. They have identical param­
eters:

bool t
xxxlong(xdrs, lp)

XDR *xdrs;
long *lp;

Implementors of new XDR streams must make an XDR structure (with new
operation routines) available to clients, using some kind of create routine.

~'\sun ~~ microsystems
Revision B of 17 February 1986

5
XDR Standard

XDR Sta.ndard ... 35

5.1. Basic Block Size .. 35

5.2. Integer .. 35

5.3. Unsigned Integer .. 35

5.4. Enumerations ... 36

5.5. Booleans ... 36

5.6. Hyper Integer and Hyper Unsigned .. 36

5.7. Floating Point and Double Precision .. 36

5.8. Opaque Data ... 37

5.9. Counted Byte Strings .. 37

5.10. Fixed Arrays .. 38

5.11. Counted Arrays .. 38

5.12. Structures ... 38

5.13. Discriminated Unions ... 38

5.14. Missing Specifications ... 39

5.15. Library Primitive / XDR Standard Cross Reference 39

5.1. Basic Block Size

5.2. Integer

5.3. Unsigned Integer

5
XDR Standard

This section defines the external data representation standard. The standard is
independent of languages, operating systems and hardware architectures. Once
data is shared among machines, it should not matter that the data was produced
on a Sun, but is consumed by a VAX (or vice versa). Similarly the choice of
operating systems should have no influence on how the data is represented exter­
nally. For programming languages, data produced by a C program should be
readable by a Fortran or Pascal program.

The external data representation standard depends on the assumption that bytes
(or octets) are portable. A byte is defined to be eight bits of data. It is assumed
that hardware that encodes bytes onto various media will preserve the bytes'
meanings across hardware boundaries. For example, the Ethernet standard sug­
gests that bytes be encoded "little endian" style. Both Sun and V AX hardware
implementations adhere to the standard.

The XDR standard also suggests a language used to describe data. The language
is a bastardized C; it is a data description language, not a programming language.
(The Xerox Courier Standard uses bastardized Mesa as its data description
language.)

The representation of all items requires a multiple of four bytes (or 32 bits) of
data. The bytes are numbered 0 through n-l, where (n mod 4)=0. The bytes are
read or written to some byte stream such that byte m always precedes byte m+1.

An XDR signed integer is a 32-bit datum that encodes an integer in the range [-
21474 83648 , 214 74 8364 7]. The integer is represented in two's comple­
ment notation. The most and least significant bytes are 0 and 3, respectively. The
data description of integers is i nt eger.

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in
the range [0, 4294 9 67 2 9 5]. It is represented by an unsigned binary number
whose most and least significant bytes are 0 and 3, respectively. The data
description of unsigned integers is unsigned.

tt\sun ,~ mlcrosystems
35 Revision B of 17 February 1986

36 XDR Protocol Spec

5.4. Enumerations

55. Booleans

5.6. Hyper Integer and Hyper
Unsigned

5.7. Floating Point and
Double Precision

Enumerations have the same representation as integers. Enumerations are handy
for describing subsets of the integers. The data description of enumerated data is
as follows:

(typedef enum { name = value, I type-name;

For example the three colors red, yellow and blue could be described by an
enumerated type:

typedef enum { RED 2, YELLOW 3, BLUE 5 } colors;

Booleans are important enough and occur frequently enough to warrant their own
explicit type in the standard. Boolean is an enumeration with the following
form:

(typedef enum { FALSE 0, TRUE 1 } boolean;

The standard also defines 64-bit (8-byte) numbers called hyper integer and
hyper unsigned. Their representations are the obvious extensions of the
integer and unsigned defined above. The most and least significant bytes are 0
and 7, respectively.

The standard defines the encoding for the floating point data types float (32
bits or 4 bytes) and double (64 bits or 8 bytes). The encoding used is the IEEE
standard for normalized single- and double-precision floating point numbers. See
the IEEE floating point standard for more information. The standard encodes the
following three fields, which describe the floating point number:

S The sign of the number. Values 0 and 1 represent positive and negative,
respectively.

E The exponent of the number, base 2. Floats devote 8 bits to this field, while
doubles devote 11 bits. The exponents for float and double are biased by
127 and 1023, respectively.

F The fractional part of the number's mantissa, base 2. Floats devote 23 bits
to this field, while doubles devote 52 bits.

Therefore, the floating point number is described by:

(_ll*2E - Bias* IF

Just as the most and least significant bytes of a number are 0 and 3, the most and
least significant bits of a single-precision floating point number are 0 and 31.
The beginning bit (and most significant bit) offsets of S, E, and F are 0, 1, and 9,
respectively.

Revision B of 17 February 1986

5.8. Opaque Data

5.9. Counted Byte Strings

Chapter 5 -XDR Standard 37

Doubles have the analogous extensions. The beginning bit (and most significant
bit) offsets of S, E, and F are 0, 1, and 12, respectively.

The IEEE specification should be consulted concerning the encoding for signed
zero, signed infinity (overflow), and denonnalized numbers (underflow). Under
IEEE specifications, the "NaN" (not a number) is system dependent and should
not be used.

At times fixed-sized uninterpreted data needs to be passed among machines.
This data is called opaque and is described as:

typedef opaque type-name[n]i
opaque name[n]i

where n is the (static) number of bytes necessary to contain the opaque data. If n
is not a multiple of four, then the n bytes are followed by enough (up to 3) zero­
valued bytes to make the total byte count of the opaque object a multiple of four.

The standard defines a string of n (numbered 0 through n -1) bytes to be the
number n encoded as unsigned, and followed by the n bytes of the string. If
n is not a multiple of four, then the n bytes are followed by enough (up to 3)
zero-valued bytes to make the total byte count a multiple of four. The data
description of strings is as follows:

typedef string type-name<N>i
typedef string type-name<>i
string name<N>i
string name<>i

Note that the data description language uses angle brackets « and» to denote
anything that is varying-length (as opposed to square brackets to denote fixed­
length sequences of data).

The constant N denotes an upper bound of the number of bytes that a string may
contain. IfN is not specified, it is assumed to be 232_1, the maximum length.
The constant N would nonnally be found in a protocol specification. For exam­
ple, a filing protocol may state that a file name can be no longer than 255 bytes,
such as:

(string filenarne<255>;

The XDR specification does not say what the individual bytes of a string
represent; this important information is left to higher-level specifications. A rea­
sonable default is to assume that the bytes encode ASCII characters.

J

Revision B of 17 February 1986

38 XDR Protocol Spec

5.10. Fixed Arrays

5.11. Counted Arrays

5.12. Structures

S.13. Discriminated Unions

The data description for fixed-size arrays of homogeneous elements is as follows

typedef elementtype type-name[n];
elementtype name[n];

Fixed-size arrays of elements numbered 0 through n -I are encoded by individu­
ally encoding the elements of the array in their natural order, 0 through n -I.

Counted arrays provide the ability to encode varyiable-Iength arrays of homo­
geneous elements. The array is encoded as: the element count n (an unsigned
integer), followed by the encoding of each of the array's elements, starting with
element 0 and progressing through element n-I. The data description for
counted arrays is similar to that of counted strings:

typedef element type type-name<N>;
typedef elementtype type-name<>;
elementtype name<N>;
elementtype name<>;

Again, the constant N specifies the maximum acceptable element count of an
array; if N is not specified, it is assumed to be 232_1.

The data description for structures is very similar to that of standard C:

typedef struct {
component-type component-name;

type-name;

The components of the structure are encoded in the order of their declaration in
the structure.

A discriminated union is a type composed of a discriminant followed by a type
selected from a set of prearranged types according to the value of the discrim­
inant. The type of the discriminant is always an enumeration. The component
types are called "arms" of the union. The discriminated union is encoded as its
discriminant followed by the encoding of the implied arm. The data description
for discriminated unions is as follows:

typedef union switch (discriminant-type)
discriminant-value: arm-type;

default: default-arm-type;
type-name;

The default arm is optional. If it is not specified, then a valid encoding of the
union cannot take on unspecified discriminant values. Most specifications nei­
ther need nor use default arms .

• \sun ,~ microsystems
Revision B of 17 February 198(

;.14. Missing Specifications

;.15. Library Primitive I XDR
Standard Cross
Reference

Table 5-1

Chapter 5 - XDR Standard 39

The standard lacks representations for bit fields and bitmaps, since the standard is
based on bytes. This is not to say that no specification should be attempted.

The following table describes the association between the C library primitives
discussed in Section 3, and the standard data types defined in this section:

Primitives and Data Types
C Primitive XDRType Sections

xdr int
xdr_long integer 3.1,6.2

xdr short -
xdr u int

xdr_u_long unsigned 3.1,6.3
xdr u short -

- hyper integer 6.6
hyper unsigned

xdr float float 3.2,6.7
xdr double double 3.2,6.7

xdr enum enum t 3.3,6.4
xdr bool bool t 3.3,6.5

xdr _string string 3.5.1,6.9
xdr bytes 3.5.2
xdr array (varying arrays) 3.5.3,6.11

- (fixed arrays) 3.5.5,6.10
xdr opaque opaque 3.5.4,6.8

xdr union union 3.5.6,6.13
xdr reference - 3.5.7

- struct 6.6

Primitives and Data Types

~\sun ,~ microsysterns
Revision B of 17 February 1986

6

Advanced Topics

Advanced Topics .. 43

6.1. Linked Lists .. 43

6.2. The Record Marking Standard ... 47

6.1. Linked Lists

6
Advanced Topics

This section describes techniques for passing data structures that are not covered
in the preceding sections. Such structures include linked lists (of arbitrary
lengths). Unlike the simpler examples covered in the earlier sections, the follow­
ing examples are written using both the XDR C library routines and the XDR
data description language. Section 6 describes the XDR data definition language
used below.

The last example in Section 2 presented a C data structure and its associated
XDR routines for a person's gross assets and liabilities. The example is dupli­
cated below:

struct gnumbers
long g_assets;
long g_liabilities;

} ;

bool t
xdr_gnumbers(xdrs, gp)

XDR *xdrs;
struct gnumbers *gp;

if (xdr_long(xdrs, &(gp->g_assets»)
return (xdr_long(xdrs, &(gp->g_liabilities»);

return(FALSE);

Now assume that we wish to implement a linked list of such information. A data
structure could be constructed as follows:

typedef struct gnnode {

} ;

struct gnumbers gn_numbers;
struct gnnode *nxt;

typedef struct gn~ode *gnumbers_list;

The head of the linked list can be thought of as the data object; that is, the head is
not merely a convenient shorthand for a structure. Similarly the nxt field is

~~ sun ~i:f(I microsystems
43 Revision B of 17 February 1986

44 XDR Protocol Spec

used to indicate whether or not the object has terminated. Unfortunately, if the
object continues, the nxt field is also the address of where it continues. The link
addresses carry no useful infonnation when the object is serialized.

The XDR data description of this linked list is described by the recursive type
declaration of gnumbers _list:

struct gnumbers {

} ;

unsigned g_assets;
unsigned g_liabilities;

typedef union switch (boolean) {
case TRUE: struct {

} ;

struct gnumbers current_element;
gnumbers_list rest_of_list;

case FALSE: struct I};
gnumbers_list;

In this description, the boolean indicates whether there is more data following it.
If the boolean is FALSE, then it is the last data field of the structure. If it is
TRUE, then it is followed by a gnumbers structure and (recursively) by a
gnumbers_list (the rest of the object). Note that the C declaration has no
boolean explicitly declared in it (though the nxt field implicitly carries the
information), while the XDR data description has no pointer explicitly declared
in it.

Hints for writing a set of XDR routines to successfully (de)serialize a linked list
of entries can be taken from the XDR description of the pointer-less data. The
set consists of the mutually recursive routines xdr_gnumbers_list,
xdr_wrap_list, and xdr_gnnode.

bool t
xdr_gnnode(xdrs, gp)

XDR *xdrs;
struct gnnode *gp;

return(xdr_gnumbers(xdrs, &(gp->gn_numbers» &&
xdr_gnumbers_list(xdrs, & (gp->nxt»);

Revision B of 17 February 1986

bool t
xdr_wrap_list(xdrs, glp)

XDR *xdrsi
gnumbers_list *glpi

Chapter 6 - Advanced Topics 45

return(xdr_reference(xdrs, glp, sizeof(struct gnnode),
xdr_gnnode»i

struct xdr_discrim choices [2] = {
/*

* called if another node needs (de)serializing
*/

{ TRUE, xdr_wrap_list },
/*

* called when no more nodes need (de)serializing
*/

{ FALSE, xdr void

bool t
xdr_gnumbers_list(xdrs, glp)

XDR *xdrs;
gnumbers_list *glp;

bool_t more_data;

more_data = (*glp != (gnumbers_list)NULL)i
return (xdr_union (xdrs, &mo re_dat a , glp, choices, NULL);

The entry routine is xdr_gnumbers_list () ; its job is to translate between
the boolean value mor e _ da ta and the list pointer values. If there is no more
data, the xdr _union () primitive calls xdr _void () and the recursion is ter­
minated. Otherwise, xdr _union () calls xdr _wrap_list () , whose job is
to dereference the list pointers. The xdr _ gnnode () routine actually
(de)seriali zes data of the current node of the linked list, and recursively calls
xdr_gnumbers_list () to handle the remainder of the list.

You should convince yourself that these routines function correctly in all three
directions (XDR _ENCODE, XDR _DECODE, and XDR_FREE) for linked lists of
any length (including zero). Note that the boolean more_data is always ini­
tialized, but in the XDR _DECODE case it is overwritten by an externally gen­
erated value. Also note that the value of the boo 1 t is lost in the stack. The
essence of the value is reflected in the list's pointers.

The unfortunate side effect of (de)serializing a list with these routines is that the
C stack grows linearly with respect to the number of nodes in the list. This is due
to the recursion. The routines are also hard to code (and understand) due to the
number and nature of primitives involved (such as xdr _reference,
xdr_union, and xdr_ void).

~\sun ,~ microsystems
Revision B of 17 February 1986

46 XDR Protocol Spec

The following routine collapses the recursive routines. It also has other optimi­
zations that are discussed below.

bool t
xdr_gnumbers_list(xdrs, glp)

XDR *xdrs;
gnumbers_list *glp;

bool_t more_data;

while (TRUE) {
more_data = (*glp != (gnumbers_list)NULL);
if (!xdr_bool(xdrs, &more_data»

return(FALSE);
if (!more_data)

return(TRUE); /* we are done */
if (!xdr_reference(xdrs, glp, sizeof(struct gnnode),

xdr _gnumbers))
return(FALSE);

glp = &«*glp)->nxt);

The claim is that this one routine is easier to code and understand than the three
recursive routines above. (It is also buggy, as discussed below.) The parameter
g 1 P is treated as the address of the pointer to the head of the remainder of the list
to be (de)serialized. Thus, g 1 P is set to the address of the current node's nxt
field at the end of the while loop. The discriminated union is implemented in­
line; the variable more_data has the same use in this routine as in the routines
above. Its value is recomputed and re-(de) serialized each iteration of the loop.
Since * g 1 P is a pointer to a node, the pointer is dereferenced using
xdr _reference (). Note that the third parameter is truly the size of a node
(data values plus nxt pointer), while xdr _ gn umber s () only (de)serializes the
data values. We can get away with this tricky optimization only because the nxt
data comes after all legitimate external data.

The routine is buggy in the XDR _FREE case. The bug is that
xdr_reference () will free the node *glp. Upon return the assignment
glp = & ((*glp) ->nxt) cannot be guaranteed to work since *glp is no
longer a legitimate node. The following is a rewrite that works in all cases. The
hard part is to avoid dereferencing a pointer which has not been initialized or
which has been freed.

~\sun ,~ microsystems
Revision B of 17 February 1986

6.2. The Record Marking
Standard

bool_t
xdr_gnumbers_list(xdrs, glp)

XDR *xdrs;
gnumbers_list *glp;

bool_t more_data;
bool_t freeing;

Chapter 6 - Advanced Topics 47

gnumbers_list *next; /* the next value of glp */

freeing = (xdrs->x_op XDR_FREE);
while (TRUE) {

more_data = (*glp != (gnumbers_list)NULL);
if (!xdr_bool(xdrs, &more_data»

return(FALSE);
if (!more_data)

return(TRUE); /* we are done */
if (freeing)

next = &«*glp)->nxt);
if (!xdr_reference(xdrs, glp, sizeof(struct gnnode),

xdr_gnumbers))
return(FALSE);

glp = (freeing) ? next & ((* g 1 p) - >nxt) ;

Note that this is the first example in this document that actually inspects the
direction of the operation (xdrs->x_op). The claim is that the correct iterative
implementation is still easier to understand or code than the recursive implemen­
tation. It is certainly more efficient with respect to C stack requirements.

A record is composed of one or more record fragments. A record fragment is a
four-byte header followed by 0 to 231_1 bytes of fragment data. The bytes encode
an unsigned binary number; as with XDR integers, the byte order is from highest
to lowest. The number encodes two values - a boolean that indicates whether
the fragment is the last fragment of the record (bit value 1 implies the fragment is
the last fragment), and a 31-bit unsigned binary value which is the length in bytes
of the fragment's data. The boolean value is the high-order bit of the header; the
length is the 31 low-order bits.

(Note that this record specification is not in XDR standard form and cannot be
implemented using XDR primitives!)

Revision B of 17 February 1986

A
Synopsis of XDR Routines

Synopsis ofXDR Routines ... 51

A
Synopsis of XDR Routines

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep, maxsize, elsize;
xdrproc_t elproc;

A filter primitive that translates between arrays and their corresponding external
representations. The parameter ar rp is the address of the pointer to the array,
while s i z ep is the address of the element count of the array; this element count
cannot exceed maxsize. The parameter elsize is the sizeof () each of the
array's elements, and elproc is an XDR filter that translates between the array
elements' C form, and their external representation. This routine returns one if it
succeeds, zero otherwise.

xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

A filter primitive that translates between booleans (C integers) and their external
representations. When encoding data, this filter produces values of either one or
zero. This routine returns one if it succeeds, zero otherwise.

xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep, maxsize;

A filter primitive that translates between counted byte strings and their external
representations. The parameter sp is the address of the string pointer. The
length of the string is located at address sizep; strings cannot be longer than
maxsize. This routine returns one if it succeeds, zero otherwise .

• \sun ,~ microsystems
51 Revision B of 17 February 1986

52 XDR Protocol Spec

void
xdr_destroy(xdrs)

XDR *xdrsi

A macro that invokes the destroy routine associated with the XDR stream, xdrs.
Destruction usually involves freeing private data structures associated with the
stream. Using xdrs afierinvoking xdr_destroy () is undefined.

xdr_double(xdrs, dp)
XDR *xdrsi
double *dPi

A filter primitive that translates between C double precision numbers and their
external representations. This routine returns one if it succeeds, zero otherwise.

xdr_enum(xdrs, ep)
XDR *xdrSi
enum_t *epi

A filter primitive that translates between C enums (actually integers) and their
external representations. This routine returns one if it succeeds, zero otherwise.

xdr_float(xdrs, fp)
XDR *xdrsi
float *fPi

A filter primitive that translates between C floats and their external representa­
tions. This routine returns one if it succeeds, zero otherwise.

u int
xdr_getpos(xdrs)

XDR *xdrSi

A macro that invokes the get-position routine associated with the XDR stream,
xdr s. The routine returns an unsigned integer, which indicates the position of
the XDR byte stream. A desirable feature ofXDR streams is that simple arith­
metic works with this number, although the XDR stream instances need not
guarantee this. .

Revision B of 17 February 1986

xdr_reference ()

Appendix A - Synopsis of XDR Routines 53

long *
xdr_inline(xdrs, len)

XDR *xdrs;
int len;

A macro that invokes the in-line routine associated with the XDR stream, xdrs.
The routine returns a pointer to a contiguous piece of the stream's buffer; 1 e n is
the byte length of the desired buffer. Note that the pointer is cast to long *.
Warning: xdr_inline () may return 0 (NULL) if it cannot allocate a contigu­
ous piece of a buffer. Therefore the behavior may vary among stream instances;
it exists for the sake of efficiency.

xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

A filter primitive that translates between C integers and their external representa­
tions. This routine returns one if it succeeds, zero otherwise.

xdr_Iong(xdrs, lp)
XDR *xdrs;
long *lp;

A filter primitive that translates between C long integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

A filter primitive that translates between fixed size opaque data and its external
representation. The parameter cp is the address of the opaque object, and en t is
its size in bytes. This routine returns one if it succeeds, zero otherwise.

xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

A primitive that provides pointer chasing within structures. The parameter pp is
the address of the pointer; size is the sizeof () the structure that *pp points
to; and proc is an XDR procedure that filters the structure between its C fonn
and its external representation. This routine returns one if it succeeds, zero

Revision B of 17 February 1986

54 XDR Protocol Spec

otherwise.

xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

A macro that invokes the set position routine associated with the XDR stream
xdrs. The parameter pos is a position value obtained from xdr _getpos () .
This routine returns one if the XDR stream could be repositioned, and zero other­
wise. Warning: it is difficult to reposition some types of XDR streams, so this
routine may fail with one type of stream and succeed with another.

xdr_short(xdrs, sp)
XDR *xdrs;
short *sp;

A filter primitive that translates between C short integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u_int maxsize;

A filter primitive that translates between C strings and their corresponding exter­
nal representations. Strings cannot cannot be longer than maxsize. Note that
sp is the address of the string's pointer. This routine returns one ifit succeeds,
zero otherwise.

xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

A filter primitive that translates between C uns igned integers and their exter­
nal representations. This routine returns one if it succeeds, zero otherwise.

xdr_u_long(xdrs, ulp)
XDR *xdrs;
unsigned long *ulp;

A filter primitive that translates between C uns igned long integers and their
external representations. This routine returns one if it succeeds, zero otherwise.

~~~un 
~ mtcrosystems 

Revision B of 17 February 1986 



xdr_wrapstrinq 0 

Appendix A - Synopsis of XDR Routines 55 

xdr_u_short(xdrs, usp) 
XDR *xdrs; 
unsigned short *usp; 

A filter primitive that translates between C uns igned short integers and 
their external representations. This routine returns one if it succeeds, zero other­
wise. 

xdr_union(xdrs, dscmp, unp, choices, dfault) 
XDR *xdrs; 
int *dscmp; 
char *unp; 
struct xdr discrim *choicesi 
xdrproc_t dfaulti 

A filter primitive that translates between a discriminated C union and its 
corresponding external representation. The parameter ds crop is the address of 
the union's discriminant, while in the address of the union. This routine returns 
one if it succeeds, zero otherwise. 

This routine always returns one. It may be passed to RPC routines that require a 
function parameter, where nothing is to be done. 

xdr_wrapstring(xdrs, sp) 
XDR *xdrsi 
char **sp; 

A primitive that calls xdr_string (xdrs, sp,MAXUNSIGNED); where 
MAXUNSIGNED is the maximum value of an unsigned integer. This is handy 
because the RPC package passes only two parameters XDR routines, whereas 
xdr_string () ,one of the most frequently used primitives, requires three 
parameters. This routine returns one if it succeeds, zero otherwise. 

void 
xdrmem_create(xdrs, addr, size, op) 

XDR *xdrsi 
char *addri 
u int size; 
enum xdr_op 0Pi 

] 

This routine initializes the XDR stream object pointed to by xdr s. The stream's 
data is written to, or read from, a chunk of memory at location a ddr whose 
length is no more than s i z e bytes long. The op determines the direction of the 

Revision B of 17 February 1986 



56 XDR Protocol Spec 

xdrrec_create () 

xdrrec_endofrecord() 

XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE). 

void 
xdrrec_create(xdrs, 

sendsize, recvsize, handle, readit, writeit) 
XDR *xdrs; 
u_int sendsize, recvsize; 
char *handle; 
int (*readit) (), (*writeit) (); 

This routine initializes the XDR stream object pointed to by xdrs. The stream's 
data is written to a buffer of size sendsize; a value of zero indicates the sys­
tem should use a suitable default. The stream's data is read from a buffer of size 
recvsize; it too can be set to a suitable default by passing a zero value. When 
a stream's output buffer is full, writeit () is called. Similarly, when a 
stream's input buffer is empty, readit () is called. The behavior of these two 
routines is similar to the UNIX system calls read and write, except that han­
dle is passed to the former routines as the first parameter. Note that the XDR 
stream's op field must be set by the caller. Warning: this XDR stream imple­
ments an intermediate record stream. Therefore there are additional bytes in the 
stream to provide record boundary information. 

xdrrec_endofrecord(xdrs, sendnow) 
XDR *xdrs; 
int sendnow; 

This routine can be invoked only on streams created by xdrrec_create (). 
The data in the output buffer is marked as a completed record, and the output 
buffer is optionally written out if sendnow is non-zero. This routine returns one 
if it succeeds, zero otherwise. 

xdrrec_eof(xdrs) 
XDR *xdrs; 
int empty; 

This routine can be invoked only on streams created by xdrrec _create ( ) . 
After consuming the rest of the current record in the stream, this routine returns 
one if the stream has no more input, zero otherwise . 

• sun 
~ mlclO6ystems 

Revision B of 17 February 1986 



xdrrec_skiprecord() 

xdrstdio_create() 

Appendix A - Synopsis of XDR Routines 57 

( xdrrec_skiprecord(xdrs) 
XDR *xdrsi ] 

This routine can be invoked only on streams created by xdrrec_create (). 
It tells the XDR implementation that the rest of the current record in the stream's 
input buffer should be discarded. This routine returns one if it succeeds, zero 
otherwise. 

void 
xdrstdio_create(xdrs, file, op) 

XDR *xdrs; 
FILE *file; 
enum xdr_op op; 

This routine initializes the XDR stream object pointed to by xdrs. The XDR 
stream data is written to, or read from, the Standard I/O stream file. The 
parameter op determines the direction of the XDR stream (either XDR_ENCODE, 
XDR _DECODE, or XDR _FREE). Warning: the destroy routine associated with 
such XDR streams calls fflush () on the file stream, but never fclose (). 

Revision B of 17 February 1986 





Index 

Special Characters 
<rpc/rpc .h>, 3,11 
<rpc/xdr. h>, 11 
[value,proc], 18 

A 
addr,25,55 
advanced topics, 43 
argc,16 
argv, 16 
arms, 18 
arrays, 14 
arrp,51 

B 
basic block size, 35 
block size, 35 
bool_ t, 8, 45 
boo1eans, 36 
bp,12 
buf, 26 
byte arrays, 14 

C 
char *,13 
char **,13 
cnt, 53 
counted arrays, 38 
counted byte strings, 37 
cp,53 

D 
defaul tarm, 18 
direction of XDR operations, 21 
discriminated unions, 18,38 
double, 36, 52 
double precision, 36 
dscmp,55 

E 
elementsiz, 14 
elproc,51 
elsize,51 
enum, 12,52 

-59-

enum_t, 18 
enumerations, 36 
ep,12 
examples, 15 

F 
FllLSE,6, 7,8,11,12,13,18,21,32,44 
fclose (), 57 
fflush (), 57 
FILE, 6,25,57 
fixed arrays, 38 
fixed sized arrays, 17 
float, 36, 52 
floating point, 36 
flushnow,27 
fp,25 

G 
gnp, 20 
gnumbers, 18,20,44 
gnumbers_list,44 

H 
handle, 56 
htonl (), 32 
hyper integer,36 
hyper unsigned, 36 

I 
integer, 35 
iohandle, 26 

J 
justification for XDR, 3 

K 
krypton, 15 

L 
len, 17,25,53 
libc.a,3 
library of XDR routines, 6 
library primitives, 39 
library primitives for XDR, 11 



Index Continued 

linked lists, 43 
lint, 4 
long, 53 
long *,53 

M 
main 0,16 
maxlength, 13, 14 
maxsize, 51,54 
MAXUNSIGNED, 55 
memory streams, 25 
missing specifications, 39 
more_data, 45, 46 

N 
N,37,38 
nbytes,26 
netuser, 15, 17 
non-filter primitives, 21 
ntohl (), 32 
nu_gids,17 
NULL, 13, 14, 18, 19,20,21, 31,53 
nxt, 43, 44, 46 

o 
object, 31 
op, 55, 56, 57 
opaque, 37 
opaque data, 17, 37 

p 
pointer semantics and XDR, 20 
pointers, 19 
pos,21,54 
proc, 18, 19,53 

R 
read,56 
read (), 5, 26 
reader, 4, 5, 6 
readitO,56 
readproc, 26 
reason for XDR, 3 
record (TCP/IP) streams, 26 
record marking standard, 47 
recvsize,26, 56 

S 
sendnow,56 
sendsize, 26, 56 
sendto () , 26 
short, 54 
size, 53,55 
sizeof 0, 14, 19,51,53 
sizep,51 
ssize,19 
standard for XDR, 35 
standard 110 streams, 25 

-60-

stream access, 25 
stream implementation in XDR, 31 
strings, 13 
structures, 38 

T 
TRUE,6,8, 11, 12, 13,27,32,44 

U 
u_tag_arms,19 
union, 55 
unsigned, 35,37,54 
unsigned integer, 35 
unsigned long,54 
unsigned short,55 

V 
value, 18 

W 
write, 56 
write (), 5, 26 
writeit (), 56 
wri teproc, 26 
wri teproc () , 27 
wri ter, 3, 4, 5, 6 

X 
x_base, 31 
x_destroy (), 31 
x _getbytes () , 32 
x_getlong (), 32 
x_getpostn 0, 31 
x_handy, 31 
x_inline,32 
x_inline (), 31 
x_op, 25, 31 
xyrivate,31 
xyublic,31 
xyutbytes (), 32 
xyutlong (), 32 
x_setpostn (), 31 
XDR 

arrays, 14 
booleans, 36 

. byte arrays, 14 
counted arrays, 38 
counted byte strings, 37 
discriminated unions, 18, 38 
double precision, 36 
enumerations, 36 
fixed arrays, 38 
fixed sized arrays, 17 
floating point, 36 
hyper integer and unsigned, 36 
integer, 35 
library, 6, 11 
library primitives, 39 
memory streams, 25 



XDR, continued 
non-filter primitives, 21 
object, 31 
opaque data, 17.37 
pointers, 19 
record (TCP/IP) streams, 26 
record marking standard, 47 
standard 110 streams, 25 
stream access, 25 
stream implementation, 31 
strings, 13 
structures, 38 
unsigned integer, 35 

XDR library 
constructed data type filters, 13 
enumeration filters, 12 
floating point filters, 12 
no data, 12 
number filters, 11 

XDR operation directions, 21 
XDR standard, 35 
xdr_array (), 14, 16, 17.20,51 
xdr_bool 0,51 
xdr_bytes(),14,51 
XDR_DECODE,6, 13,21,45,56,57 
xdr _destroy (), 21, 52 
xdr_discrim, 18 
xdr _double () , 52 
xdr _element, 14 
XDR_ENCODE,6, 13,21,45,56,57 
xdr_enumO, 52 
xdr_float (), 52 
XDR_FREE, 13,21,45,46,56.57 
xdr _getpos () , 21, 52, 54 
xdr _gnnode, 44 
xdr _gnnode () , 45 
xdr_gnumbers 0,8,19,46 
xdr_gnumbers_list,44 
xdr_gnumbers_list(),45 
xdr _ inline () , 53 
xdr_int (), 53 
xdr_long,7 
xdr_long (), 5, 6, 53 
xdr_opaque (), 17,53 
xdr_reference,45 
xdr_reference (), 19,20,21,46,53 
xdr_setpos (), 21,54 
xdr_short (), 54 
xdr_string,13 
xdr_string 0,13,14,16,54,55 
xdr_struct (), 19 
xdr_u_int 0, 54 
xdr_u_long 0,54 
xdr_u_short(),55 
xdr_union, 45 
xdr _union ( ), 19, 21, 45, 55 
xdr _void, 45 
xdr _void () ,21,45,55 
xdr_wrap_list,44 
xdr_wrap_list 0, 45 

-61-

xdr _wrap_string (), 16, 19 
xdr_wrapstring(),55 
xdr_xxx, 7 
xdrmem _ create () , 25, 26, 55 
xdrrec _ create () , 26, 56, 57 
xdrrec _ endofrecord (), 27, 56 
xdrrec_eof (), 27, 56 
xdrrec _ skiprecord (), 27, 57 
xdrs, 7,11,12,13,25,26,52,53,54,55,56,57 
xdrs->x _ op, 21, 47 
xdrstdio_create 0, 6, 25, 26. 57 
xxx, 6, 7,26,32 

Index Continued 



I 



Retnote Procedure Call 
Protocol Specification 





Contents 

Chapter 1 Introduction .......................................................................................................... 3 

1.1. Tenninology ....................................................................................................................... 3 

1.2. The RPC Model ................................................................................................................ 3 

1.3. Transports and Semantics ........................................................................................... 4 

1.4. Binding and Rendezvous Independence ............................................................. 4 

1.5. Message AutlIentication ............................................................................................... 4 

Chapter 2 RPC Protocol Requirements ................................................................... 7 

2.1. Remote Programs and Procedures ......................................................................... 7 

2.2. Aufuentication ................................................................................................................... 8 

2.3. Program Number Assignment .................................................................................. 8 

2.4. Oilier Uses of ilie RPC Protocol............................................................................. 9 

Batching ............................................................................................................................. 9 

Broadcast RPC ............................................................................................................... 9 

Chapter 3 The RPC Message Protocol..................................................................... 13 

3.1. Aufuentication Parameter Specification ............................................................. 16 

Null Aufuentication ..................................................................................................... 16 

UNIX Aufuentication ................................................................................................. 16 

3.2. Record Marking Standard ........................................................................................... 17 

Appendix A Port Mapper Program Protocol........................................................ 21 

A.l. The RPC Protocol .......................................................................................................... 21 

Transport Protocol Numbers .................................................................................. 21 

-i-



Contents Continued 

RPC Procedures ............................................................................................................. 2] 

Do Nothing .................................................................................................................. 2] 

Set a Mapping ............................................................................................................ 2~ 

Unset a Mapping ...................................................................................................... 2~ 

Look Up a Mapping ............................................................................................... 2~ 

Dumping tlte Mappings ....................................................................................... 2~ 

Indirect Call Routine ............................................................................................. 23 

-ii-



1 
Introduction 

Introduction ....................................................................................................................................... 3 

1.1. Tenninology ....................................................................................................................... 3 

1.2. The RPC Model ................................................................................................................ 3 

1.3. Transports and Semantics ........................................................................................... 4 

1.4. Binding and Rendezvous Independence ............................................................. 4 

1.5. Message Authentication ~.............................................................................................. 4 





1.1. Terminology 

1.2. The RPC Model 

1 
Introduction 

This document specifies a message protocol used in implementing Sun's Remote 
Procedure Call (RPC) package. The message protocol is specified with the 
eXternal Data Representation (XDR) language. 

This document assumes that the reader is familiar with both RPC and XDR. It 
does not attempt to justify RPC or its uses. Also, the casual user of RPC does 
not need to be familiar with the information in this document. 

The document discusses servers, services, programs, procedures, clients and ver­
sions. A server is a machine where some number of network services are imple­
mented. A service is a collection of one or more remote programs. A remote 
program implements one or more remote procedures; the procedures, their 
parameters and results are documented in the specific program's protocol 
specification (see Appendix C for an example). Network clients are pieces of 
software that initiate remote procedure calls to services. A server may support 
more than one version of a remote program in order to be forward compatible 
with changing protocols. 

For example, a network file service may be composed of two programs. One 
program may deal with high level applications such as file system access control 
and locking. The other may deal with low-level file 110, and have procedures 
like "read" and "write". A client machine of the network file service would 
call the procedures associated with the two programs of the service on behalf of 
some user on the client machine. 

The remote procedure call model is similar to the local procedure call model. In 
the local case, the caller places arguments to a procedure in some well-specified 
location (such as a result register). It then transfers control to the procedure, and 
eventually gains back control. At that point, the results of the procedure are 
extracted from the well-specified location, and the caller continues execution. 

The remote procedure call is similar, except that one thread of control winds 
through two processes - one is the caller's process, the other is a server's pro­
cess. That is, the caller process sends a call message to the server process and 
waits (blocks) for a reply message. The call message contains the procedure's 
parameters, among other things. The reply message contains the procedure's 
results, among other things. Once the reply message is received, the results of 
the procedure are extracted, and caller's execution is resumed. 

3 Revision B of 17 February 1986 



4 RPC Protocol Spec 

1.3. Transports and 
Semantics 

1.4. Binding and Rendezvous 
Independence 

1.5. Message Authentication 

On the server side, a process is donnant awaiting the arrival of a call message. 
When one arrives the server process extracts the procedure's parameters, com­
putes the results, sends a reply message, and then awaits the next call message. 
Note that in this model, only one of the two processes is active at any given time. 
That is, the RPC protocol does not explicitly support multi-threading of caller or 
server processes. 

The RPC protocol is independent of transport protocols. That is, RPC does not 
care how a message is passed from one process to another. The protocol only 
deals with the specification and interpretation of messages. 

Because of transport independence, the RPC protocol does not attach specific 
semantics to the remote procedures or their execution. Some semantics can be 
inferred from (but should be explicitly specified by) the underlying transport pro­
tocol. For example, RPC message passing using UDP/IP is unreliable. Thus, if 
the caller retransmits call messages after short time-outs, the only thing he can 
infer from no reply message is that the remote procedure was executed zero or 
more times (and from a reply message, one or more times). On the other hand, 
RPC message passing using TCP/IP is reliable. No reply message means that the 
remote procedure was executed at most once, whereas a reply message means 
that the remote procedure was exactly once. (Note: At Sun, RPC is currently 
implemented on top of TCP/IP and UDP/IP transports.) 

The act of binding a client to a service is not part of the remote procedure call 
specification. This important and necessary function is left up to some higher 
level software. (The software may use RPC itself; see Appendix C.) 

Implementors should think of the RPC protocol as the jump-subroutine instruc­
tion ("JSR") of a network; the loader (binder) makes JSR useful, and the loader 
itself uses JSR to accomplish its task. Likewise, the network makes RPC useful, 
using RPC to accomplish this task. 

The RPC protocol provides the fields necessary for a client to identify himself to 
a service and vice versa. Security and access control mechanisms can be built on 
top of the message authentication. 

~\sun ~ microsystems 
Revision B of 17 February 1986 



2 
RPC Protocol Requirements 

RPC Protocol Requirements ................................................................................................ 7 

2.1. Remote Programs and Procedures ......................................................................... 7 

2.2. Aufuentication ................................................................................................................... 8 

2.3. Program Number Assignment .................................................................................. 8 

2.4. Ofuer Uses of fue RPC Protocol ............................................................................. 9 

Batching ............................................................................................................................. 9 

Broadcast RPC ............................................................................................................... 9 





2.1. Remote Programs and 
Procedures 

2 
RPC Protocol Require11lents 

The RPC protocol must provide for the following: 

1. Unique specification of a procedure to be called. 

2. Provisions for matching response messages to request messages. 

3. Provisions for authenticating the caller to service and vice versa. 

Besides these requirements, features that detect the following are worth support­
ing because of protocol roll-over errors, implementation bugs, user error, and net­
work administration: 

1. RPC protocol mismatches. 

2. Remote program protocol version mismatches. 

3. Protocol errors (such as misspecification of a procedure's parameters). 

4. Reasons why remote authentication failed. 

5. Any other reasons why the desired procedure was not called. 

The RPC call message has three unsigned fields: remote program number, remote 
program version number, and remote procedure number. The three fields 
uniquely identify the procedure to be called. Program numbers are administered 
by some central authority (like Sun). Once an implementor has a program 
number, he can implement his remote program; the first implementation would 
most likely have the version number of 1. Because most new protocols evolve 
into better, stable and mature protocols, a version field of the call message 
identifies which version of the protocol the caller is using. Version numbers 
make speaking old and new protocols through the same server process possible. 

The procedure number identifies the procedure to be called. These numbers are 
documented in the specific program's protocol specification. For example, a file 
service's protocol specification may state that its procedure number 5 is read 
and procedure number 12 is write. 

Just as remote program protocols may change over several versions, the actual 
RPC message protocol could also change. Therefore, the call message also has 
the RPC version number in it; this field must be two (2). 

7 Revision B of 17 February 1986 



8 RPC Protocol Spec 

2.2. Authentication 

2.3. Program Number 
Assignment 

The reply message to a request message has enough information to distinguish 
the following error conditions: 

1. The remote implementation of RPC does speak protocol version 2. The 
lowest and highest supported RPC version numbers are returned. 

2. The remote program is not available on the remote system. 

3. The remote program does not support the requested version number. The 
lowest and highest supported remote program version numbers are returned. 

4. The requested procedure number does not exist (this is usually a caller side 
protocol or programming error). 

5. The parameters to the remote procedure appear to be garbage from the 
server's point of view. (Again, this is caused by a disagreement about the 
protocol between client and service.) 

Provisions for authentication of caller to service and vice versa are provided as a 
wart on the side of the RPC protocol. The call message has two authentication 
fields, the credentials and verifier. The reply message has one authentication 
field, the response verifier. The RPC protocol specification defines all three 
fields to be the following opaque type: 

enum auth_flavor { 
AUTH NULL 0, 
AUTH UNIX = 1, 
AUTH SHORT = 2 
/* and more to be defined */ 

} ; 

struct opaque_auth 

} ; 

union switch (enum auth_flavor) { 
default: string auth_body<400>; 

} ; 

In simple English, any opaque_auth structure is an auth_flavor enumera­
tion followed by a counted string, whose bytes are opaque to the RPC protocol 
implementation. 

The interpretation and semantics of the data contained within the authentication 
fields is specified by individual, independent authentication protocol 
specifications. Appendix A defines three authentication protocols. 

If authentication parameters were rejected, the response message contains infor­
mation stating why they were rejected. 

Program numbers are given out in groups ofOx20000000 (536870912) according 
to the following chart: 

Revision B of 17 February 1986 



2.4. Other Uses of the RPC 
Protocol 

Batching 

Broadcast RPC 

Chapter 2 - RPC Protocol Requirements 9 

0 - Ifffffff defined by Sun 
20000000 - 3fffffff defined by user 
40000000 - Sfffffff transient 
60000000 - 7fffffff reserved 
80000000 - 9fffffff reserved 
aOOOOOOO - bfffffff reserved 
cOOOOOOO - dfffffff reserved 
eOOOOOOO - ffffffff reserved 

The first group is a range of numbers administered by Sun Microsystems, and 
should be identical for all Sun customers. The second range is for applications 
peculiar to a particular customer. This range is intended primarily for debugging 
new programs. When a customer develops an application that might be of gen­
eral interest, that application should be given an assigned number in the first 
range. The third group is for applications that generate program numbers dynam­
ically. The final groups are reservered for future use, and should not be used. 

The intended use of this protocol is for calling remote procedures. That is, each 
call message is matched with a response message. However, the protocol itself is 
a message passing protocol with which other (non-RPC) protocols can be imple­
mented. Sun currently uses, or perhaps abuses, the RPC message protocol for the 
following two (non-RPC) protocols: batching (or pipelining) and broadcast RPC. 
These two protocols are discussed but not defined below. 

Batching allows a client to send an arbitrarily large sequence of call messages to 
a server; batching uses reliable bytes stream protocols (like TCP/IP) for their 
transport. In the case of batching, the client never waits for a reply from the 
server and the server does not send replies to batch requests. A sequence of 
batch calls is usually terminated by a legitimate RPC in order to flush the pipe­
line (with positive acknowledgement). 

In broadcast RPC based protocols, the client sends an a broadcast packet to the 
network and waits for numerous replies. Broadcast RPC uses unreliable, packet 
based protocols (like UDP/IP) as their transports. Servers that support broadcast 
protocols only respond when the request is successfully processed, and are silent 
in the face of errors. 

Revision B of 17 February 1986 





3 
The RPC Message Protocol 

The RPC Message Protocol .................................................................................................. 13 

3.1. Authentication Parameter Specification ............................................................. 16 

Null Authentication ..................................................................................................... 16 

UNIX Authentication ................................................................................................. 16 

3.2. Record Marking Standard ........................................................................................... 17 





3 
The RPC Message Protocol 

This section defines the RPC message protocol in the XDR data description 
language. The message is defined in a top down style. Note: This is an XDR 
specification, not C code. 

enum msg_type 
CALL = 0, 
REPLY = 1 

} ; 

/* 
* A reply to a call message can take on two forms: 
* the message was either accepted or rejected. 
*/ 

enum reply_stat { 
MSG ACCEPTED 0, 
MSG DENIED = 1 

} ; 

/* 
* Given that a call message was accepted, the following is 
* the status of an attempt to call a remote procedure. 
*/ 

enum accept_stat 
SUCCESS = 0, 
PROG UNAVAIL 

/* RPC executed successfully */ 
1, /* remote hasn't exported program */ 

/* remote can't support version # */ 
/* program can't support procedure */ 
/* procedure can't decode params */ 

PROG MISMATCH= 2, 
PROC UNAVAIL 3, 
GARBAGE ARGS 4 

} ; 

/* 
* Reasons why a call message was rejected: 
*/ 

enum reject_stat 
RPC MI SMATCH 

} ; 

0, /* RPC version number != 2 */ 
/* remote can't authenticate caller */ 

13 Revision B of 17 February 1986 



14 RPC Protocol Spec 

/* 
* Why authentication failed: 
*/ 

enum auth_stat { 

} ; 

/* 

AUTH BADCRED = 1, 
AUTH_REJECTEDCRED=2, 
AUTH _ BADVERF = 3, 
AUTH_REJECTEDVERF=4, 
AUTH TOOWEAK = 5, 

/* bad credentials (seal broken) * 
/* client must begin new session * 
/* bad verifier (seal broken) */ 
/* verifier expired or replayed */ 
/* rejected for security reasons * 

* The RPC message: 
* All messages start with a transaction identifier, xid, 
* followed by a two-armed discriminated union. The union' 
* discriminant is a msg_type which switches to one of tqe 
* two types of the message. The xid of a REPLY message 
* always matches that of the initiating CALL message. NB: 
* The xid field is only used for clients matching reply 
* messages with call messages; the service side cannot 
* treat this id as any type of sequence number. 
*/ 

struct rpc_msg { 

} ; 

/* 

unsigned xid; 
union switch (enum msg_type) { 

CALL: struct call_body; 
REPLY: struct reply_body; 

} ; 

* Body of an RPC request call: 
* In version 2 of the RPC protocol specification, rpcvers 
* must be equal to 2. The fields prog, vers, and proc 
* specify the remote program, its version number, and the 
* procedure within the remote program to be called. After 
* these fields are two authentication parameters: cred 
* (authentication credentials) and verf (authentication 
* verifier). The two authentication parameters are 
* followed by the parameters to the remote procedure, 
* which are specified by the specific program protocol. 
*/ 

struct call_body { 

} ; 

unsigned rpcvers; /* must be equal to two (2) */ 
unsigned prog; 
unsigned vers; 
unsigned proc; 
struct opaque_auth cred; 
struct opaque_auth verf; 
/* procedure specific parameters start here */ 

Revision B of 17 February 1986 



Chapter 3 - The RPC Message Protocol 15 

/* 
* Body of a reply to an RPC request. 
* The call message was either accepted or rejected. 
*/ 

struct reply_body { 

} ; 

/* 

union switch (enum reply_stat) 

} ; 

MSG ACCEPTED: struct accepted_reply; 
MSG DENIED: struct rejected_reply; 

* Reply to an RPC request that was accepted by the server. 
* Note: there could be an error even though the reques 
* was accepted. The first field is an authentication 
* verifier that the server generates in order to validate 
* itself to the caller. It is followed by a union whose 
* discriminant is an enum accept_stat. The SUCCESS arm 
* of the union is protocol specific. The PROG_UNAVAIL, 
* PROC_UNAVAIL, and GARBAGE_ARGS arms of the union are 
* void. The PROG_MISMATCH arm specifies the lowest and 
* highest version numbers of the remote program that are 
* supported by the server. 
*/ 

struct accepted_reply { 
struct opaque_auth verf; 

} ; 

/* 

union switch (enum accept_stat) 
SUCCESS: struct { 

} ; 

} ; 

/* 
* procedure-specific results start here 
*/ 

PROG MISMATCH: struct 
unsigned low; 
unsigned high; 

} ; 

default: struct { 

} ; 

/* 
* void. Cases include PROG_UNAVAIL, 
* PROC_UNAVAIL, and GARBAGE_ARGS. 
*/ 

* Reply to an RPC request that was rejected by the server. 
* The request can be rejected because of two reasons: 
* either the server is not running a compatible version of 
* the RPC protocol (RPC_MISMATCH), or the server refuses 
* to authenticate the caller (AUTH_ERROR). In the case of 
* an RPC version mismatch, the server returns the lowest 
* and highest supported RPC version numbers. In the case 
* of refused authentication, failure status is returned. 

Revision B of 17 February 19&6 



16 RPC Protocol Spec 

3.1. Authentication 
Parameter Specification 

Null Authentication 

UNIX Authentication 

*/ 
struct rejected_reply { 

} ; 

union switch (enum reject_stat) 
RPC_MISMATCH: struct { 

unsigned low; 
unsigned high; 

} ; 

AUTH ERROR: enum auth_stati 
} ; 

As previously stated, authentication parameters are opaque, but open-ended to 
the rest of the RPC protocol. This section defines some "flavors" of authentica­
tion which have been implemented at (and supported by) Sun. 

Often calls must be made where the caller does not know who he is and the 
server does not care who the caller is. In this case, the auth _flavor value (the 
discriminant of the opaque_auth's union) of the RPC message's credentials, 
verifier, and response verifier is AUTH _NULL (0). The bytes of the auth _body 
string are undefined. It is recommended that the string length be zero. 

The caller of a remote procedure may wish to identify himself as he is identified 
on a UNIXt system. The value of the credential's discriminant of an RPC 
call message is AUTH_UNIX (1). The bytes of the credential's string 
encode the the following (XDR) structure: 

struct auth_unix { 

} ; 

unsigned 
string 
unsigned 
unsigned 
unsigned 

stamp; 
machinename<255>; 
uid; 
gid; 
gids<10>; 

The st amp is an arbitrary id which the caller machine may generate. The 
machinename is the name of the caller's machine (like' 'krypton"). The uid 
is the caller's effective user ide The gid is the callers effective group ide The 
gids is a counted array of groups which contain the caller as a member. The 
verifier accompanying the credentials should be of AUTH _NULL (defined 
above). 

The value of the discriminate of the response verifier received in the 
reply message from the server may be AUTH _NULL or AUTH _SHORT (2). In the 
case of AUTH_SHORT, the bytes of the response verifier's string encode 
an auth _opaque structure. This new auth_ opaque structure may now be 
passed to the server instead of the original AUTH _UNIX flavor credentials. The 

t UNIX is a trademark of AT&T Bell Laboratories. 

~~\Slln ~~ microsystems 
Revision B of 17 February 1986 



3.2. Record Marking 
Standard 

Chapter 3 - The RPC Message Protocol 17 

server keeps a cache which maps short hand aut h _ opaque structures (passed 
back by way ofa AUTH_SHORT style response verifier) to the original 
credentials of the caller. The caller can save network bandwidth and server cpu 
cycles by using the new credentials. 

The server may flush the shorthand auth_opaque structure at any time. If 
this happens, the remote procedure call message will be rejected due to an 
authentication error. The reason for the failure will be AUTH REJECTEDCRED. 
At this point, the caller may wish to try the original AUTH _UNIX style of creden­
tials. 

When RPC messages are passed on top of a byte stream protocol (like TCP/IP), it 
is necessary, or at least desirable, to delimit one message from another in order to 
detect and possibly recover from user protocol errors. This is called record mark­
ing (RM). Sun uses this RMlfCP/IP transport for passing RPC messages on 
TCP streams. One RPC message fits into one RM record. 

A record is composed of one or more record fragments. A record fragment is a 
four-byte header followed by 0 to 231_1 bytes of fragment data. The bytes 
encode an unsigned binary number; as with XDR integers, the byte order is from 
highest to lowest. The number encodes two values - a boolean which indicates 
whether the fragment is the last fragment of the record (bit value 1 implies the 
fragment is the last fragment) and a 31-bit unsigned binary value which is the 
length in bytes of the fragment's data. The boolean value is the highest-order bit 
of the header; the length is the 31 low-order bits. (Note that this record 
specification is not in XDR standard form!) 

Revision B of 17 February 1986 





A 
Port Mapper Program Protocol 

Port Mapper Program Protocol .......................................................................................... 21 

A.l. The RPC Protocol .......................................................................................................... 21 

Transport Protocol Numbers .................................................................................. 21 

RPC Procedures ............................................................................................................. 21 

Do Nothing .................................................................................................................. 21 

Set a Mapping ............................................................................................................ 22 

Unset a Mapping ...................................................................................................... 22 

Look Up a Mapping ............................................................................................... 22 

Dumping the Mappings ....................................................................................... 23 

Indirect Call Routine ............................................................................................. 23 





A.I. The RPC Protocol 

Transport Protocol Numbers 

RPC Procedures 

Do Nothing 

A 
Port Mapper Program Protocol 

The port mapper program maps RPC program and version numbers to UDP/IP or 
TCP/IP port numbers. This program makes dynamic binding of remote programs 
possible. 

This is desirable because the range of reserved port numbers is very small and the 
number of potential remote programs is very large. By running only the port 
mapper on a reserved port, the port numbers of other remote programs can be 
ascertained by querying the port mapper. 

The protocol is specified by the XDR description language. 

Port Mapper RPC Program Number: 100000 
Version Number: 1 
Supported Transports: 

UDP/IP on port 111 
RM/TCP/IP on port 111 

idefine IPPROTO TCP 6 
idefine IPPROTO UDP 17 

/* protocol number for TCP/IP */ 
/* protocol number for UDP/IP */ 

Here is a list of RPC procedures: 

Procedure 0, Version 2. 

(~O __ ._P_MAP ___ P_R_O_C ___ NU __ L_L __ (_) __ r_e_t_u_r_n_s __ (_) __________________________ ~J 
This procedure does no work. By convention, procedure zero of any protocol 
takes no parameters and returns no results. 

21 Revision B of 17 February 1986 



22 RPC Protocol Spec 

Set a Mapping 

Unset a Mapping 

Look Up a Mapping 

Procedure 1, Version 2. 

1. PMAPPROC_SET (prog,vers,prot,port) returns (resp) 
unsigned prog; 
unsigned vers; 
unsigned prot; 
unsigned port; 
boolean resp; 

When a program first becomes available on a machine, it registers itself with the 
port mapper program on the same machine. The program passes its program 
number prog, version number vers, transport protocol number prot, and the 
port port on which it awaits service request. The procedure returns re sp, 
whose value is TRUE if the procedure successfully established the mapping and 
FALSE otherwise. The procedure refuses to establish a mapping if one already 
exists for the tuple [prog, vers, prot] . 

Procedure 2, Version 2. 

2. PMAPPROC UNSET (prog,vers,dummyl,dummy2) returns (resp) 
unsigned prog; 
unsigned vers; 
unsigned dummy1; 
unsigned dummy2; 
boolean resp; 

/* value always ignored */ 
/* value always ignored */ 

When a program becomes unavailable, it should unregister itself with the port 
mapper program on the same machine. The parameters and results have mean­
ings identical to those of PMAPPROC _SET. 

Procedure 3, Version 2. 

3. PMAPPROC GETPORT (prog,vers,prot,dummy) returns (port) 
unsigned prog; 
unsigned vers; 
unsigned prot; 
unsigned dummy; 
unsigned port; 

/* this value always ignored */ 
/* zero means program not registered */ 

Given a program numberprog, version number vers, and transport protocol 
number prot, this procedure returns the port number on which the program is 
awaiting call requests. A port value of zeros means the program has not been 
registered. 

Revision B of 17 February 1986 



Dumping the Mappings 

Indirect Call Routine 

Appendix A - Port Mapper Program Protocol 23 

Procedure 4, Version 2. 

4. PMAPPROC DUMP () returns (maplist) 
struct maplist { 

union switch (boolean) 
FALSE: struct { 1* void, end of list *1 }; 
TRUE: struct { 

} ; 

} ; 

maplist; 

unsigned prog; 
unsigned vers; 
unsigned prot; 
unsigned port; 
struct maplist the_rest; 

This procedure enumerates all entries in the port mapper's database. The pro­
cedure takes no parameters and returns a list of program, version, protocol, and 
port values. 

Procedure 5, Version 2. 

5. PMAPPROC CALLIT (prog,vers,proc,args) returns (port, res) 
unsigned prog; 
unsigned vers; 
unsigned proc; 
string args<>; 
unsigned port; 
string res<>; 

This procedure allows a caller to call another remote procedure on the same 
machine without knowing the remote procedure's port number. Its intended use 
is for supporting broadcasts to arbitrary remote programs via the well-known port 
mapper's port. The parameters prog, vers, proc, and the bytes of args are 
the program number, version number, procedure number, and parameters of the 
remote procedure. Note: 

1. This procedure only sends a response if the procedure was successfully exe­
cuted and is silent (no response) otherwise. 

2. The port mapper communicates with the remote program using UDP/IP 
only. 

The procedure returns the remote program's port number, and the bytes of results 
are the results of the remote procedure. 

Revision B of 17 February 1986 





Index 

A 
args,23 
assignment of program numbers, 8 
auth_flavor,8 
AUTH _NULL, 16 
auth _opaque, 16, 17 
AUTH_REJECTEDCRED,17 
AUTH_SHORT, 16, 17 
AUTH_UNIX, 16, 17 
authentication, 8 
authentication parameter specification, 16 

B 
batching,9 
binding and rendezvous independence, 4 
broadcast RPC, 9 

C 
credential, 16 

F 
FALSE, 22 

gid, 16 
gids,16 

G 

M 
machinename, 16 
message authentication, 4 

N 
null authentication, 16 

o 
opaque_auth,8 
other uses of RPC, 9 

P 
PMAPPROC_CALLIT,23 
PMAPPROC_DUMP,23 
PMAPPROC_GETPORT,22 
PMAPPROC _NULL, 21 
PMAPPROC _SET, 22 

-25-

PMAPPROC_UNSET,22 
port, 22 
port mapper protocol, 21 
proc,23 
prog, 22, 23 
program number assignment, 8 
prot, 22 

R 
read, 7 
record marking standard, 17 
remote programs and procedures, 7 
resp,22 
response verifier, 16, 17 
RPC message protocol, 13 
RPC model, 3 
RPC package, 3 
RPC procedures, 21 
RPC protocol, 21 
RPC protocol requirements, 7 

S 
semantics, 4 
stamp, 16 

T 
terminology, 3 
transport protocol numbers, 21 
transport protocols, 4 
TRUE,22 

u 
uid,16 
UNIX authentication, 16 

V 
verifier, 16 
vers, 22, 23 

w 
write, 7 



Index Continued 

X 
XDR language, 3 

I 

-26-



Network File System 
Protocol Specification 





Contents 

Chapter 1 Introduction .......................................................................................................... 3 

1.1. Remote Procedure Call ................................................................................................ 3 

1.2. External Data Representation ................................................................................... 4 

1.3. Stateless Servers ............................................................................................................... 4 

Chapter 2 NFS Protocol Definition ............................................................................. 9 

2.1. Introduction ......................................................................................................................... 9 

2.2. Version 2 .............................................................................................................................. 9 

Server/Client Relationship ...................................................................................... 10 

Permission Issues .......................................................................................................... 10 

RPC Information ........................................................................................................... 11 

Sizes ...................................................................................................................................... 11 

Basic Data Types .......................................................................................................... 12 

stat ............................................................................................................................ 12 

ftype ......................................................................................................................... 13 

fhandle ................................................................................................................... 13 

timeval................................................................................................................... 14 

fattr ......................................................................................................................... 14 

sattr ......................................................................................................................... 15 

filerlame ............................................................................................................... 15 

path ............................................................................................................................ 15 

attrstat ............................................................................................................... 16 

diropargs ............................................................................................................ 16 

diropres ............................................................................................................... 16 

-i-



Contents Continued 

Server Procedures ......................................................................................................... 17 

Do Nothing .................................................................................................................. 17 

Get File Attributes .................................................................................................. 17 

Set File Attributes ................................................................................................... 18 

Get Filesystem Root .............................................................................................. 18 

Look Up File Name ............................................................................................... 18 

Read From Symbolic Link ................................................................................. 19 

Read From File ......................................................................................................... 19 

Write to Cache .......................................................................................................... 19 

Write to File ............................................................................................................... 20 

Create File ................................................................................................................... 20 

Remove File ............................................................................................................... 20 

Rename File ................................................................................................................ 21 

Create Link to File .................................................................................................. 21 

Create Symbolic Link ........................................................................................... 21 

Create Directory ....................................................................................................... 22 

Remove Directory ................................................................................................... 22 

Read From Directory ............................................................................................. 23 

Get Filesystem Attributes ................................................................................... 24 

Chapter 3 Mount Protocol Definition ........................................................................ 27 

3.1. Introduction ......................................................................................................................... 27 

3.2. Version 1 .............................................................................................................................. 27 

RPC Infonnation ........................................................................................................... 27 

Sizes ...................................................................................................................................... 28 

Basic Data Types .......................................................................................................... 28 

fhandle ................................................................................................................... 28 

fhstatus ............................................................................................................... 28 

dirpath ................................................................................................................... 28 

name ............................................................................................................................ 28 

Server Procedures ......................................................................................................... 29 

Do N othing .................................................................................................................. 29 

Add Mount Entry ..................................................................................................... 29 

-ii-



Contents Continued 

Return Mount Entries ............................................................................................ 29 

Remove Mount Entry ............................................................................................ 30 

Remove All Mount Entries ................................................................................ 30 

Return Export List .................................................................................................. 30 

- iii-





1 
Introduction 

Introduction ....................................................................................................................................... 3 

1.1. Remote Procedure Call ................................................................................................ 3 

1.2. External Data Representation ................................................................................... 4 

1.3. Stateless Servers ............................................................................................................... 4 





1.1. Remote Procedure Call 

1 
Introduction 

The Sun Network Filesystem (NFS) protocol provides transparent remote access 
to shared file systems over local area networks. The NFS protocol is designed to 
be machine, operating system, network architecture, and transport protocol 
independent. This independence is achieved through the use of Remote Pro­
cedure Call (RPC) primitives built on top of an eXternal Data Representation 
(XDR). 

The supporting mount protocol allows the server to hand out remote access 
privileges to a restricted set of clients. Thus, it allows clients to attach a remote 
directory tree at any point on some local filesystem. 

Sun's remote procedure call specification, described in the RPC Programming 
Guide, provides a clean, procedure-oriented interface to remote services. Each 
server supplies a program that is a set of procedures. The combination of host 
address, program number, and procedure number specifies one remote service 
procedure. 

RPC is a high-level protocol built on top of low-level transport protocols. It does 
not depend on services provided by specific protocols, so it can be used easily 
with any underlying transport protocol. Currently the only supported transport 
protocol is UDP/IP. 

The RPC protocol includes a slot for authentication parameters on every call. 
The contents of the authentication parameters are determined by the "flavor" 
(type) of authentication used by the server and client A server may support 
several different flavors of authentication at once: AUTH _NONE passes no 
authentication information (this is called null authentication); AUTH _UNIX 
passes the UNIXt uid, gid, and groups with each call. 

Servers have been known to change over time, and so can the protocol that they 
use. So RPC provides a version number with each RPC request. Thus, one 
server can service requests for several different versions of the protocol at the 
same time. 

t UNIX is a trademark of AT&T Bell Laboratories. 

3 Revision B of 17 February 1986 



4 NFS Protocol Spec 

1.2. External Data 
Representation 

1.3. Stateless Servers 

Sun's external data representation specification, described in the XDR Protocol 
Specification, provides a common way of representing a set of data types over a 
network. This takes care of problems such as different byte ordering on different 
communicating machines. It also defines the size of each data type so that 
machines with different structure alignment algorithms can share a common for­
mat over the network. 

In this document we use the XDR data definition language to specify the parame­
ters and results of each RPC service procedure that a NFS server provides. The 
XDR data definition language reads a lot like C, although a few new constructs 
have been added. The notation 

string 
string 

name[SIZE]; 
data<DSIZE>; 

defines name, which is a fixed size block of SIZE bytes, and data, which is a 
variable size block of up to DSIZE bytes. This same notation is used to indicate 
fixed length arrays, and arrays with a variable number of elements up to some 
maximum. The discriminated union definition 

union switch (enum status) { 
NFS OK: 
struct { 

filename 
filename 
integer 

NFS ERROR: 
struct { 

errstat 
integer 

default: 
struct {} 

file1; 
file2; 
count; 

error; 
errno; 

means the first thing over the network is an enumeration type called s tat us; if 
its value is NFS _OK, the next thing on the network will be the structure contain­
ing filel, file2, and count. If the value of status is neither NFS_OK 
norNFS_ERROR, then there is no more data to look at 

The NFS protocol is stateless. That is, a server does not need to maintain state 
about any of its clients in order to function correctly. Stateless servers have a 
distinct advantage over stateful servers in the event of a crash. With stateless 
servers, a client need only retry a request until the server responds; it does not 
even need to know that the server has crashed. The client of a stateful server, on 
the other hand, needs to detect a server crash and rebuild the server's state when 
it comes back up. 

Revision B of 17 February 1986 



Chapter 1 - Introduction 5 

This may not sound like an important issue, but it affects the protocol in some 
strange ways. We feel that it is worth a bit of extra complexity in the protocol to 
be able to write very simple servers that don't need fancy crash recovery. 

Revision B of 17 February 1986 





2 
NFS Protocol Definition 

NFS Protocol Definition .......................................................................................................... 9 

2.1. Introduction ......................................................................................................................... 9 

2.2. Version 2 .............................................................................................................................. 9 

Server/Client Relationship ...................................................................................... 10 

Permission Issues .......................................................................................................... 10 

RPC Infonn.ation ........................................................................................................... 11 

Sizes ...................................................................................................................................... 11 

Basic Data Types .......................................................................................................... 12 

stat ............................................................................................................................ 12 

ftype ......................................................................................................................... 13 

fhandle ................................................................................................................... 13 

timeval................................................................................................................... 14 

fattr ......................................................................................................................... 14 

sattr ......................................................................................................................... 15 

filename ............................................................................................................... 15 

path ............................................................................................................................ 15 

attrstat ............................................................................................................... 16 

diropargs ............................................................................................................ 16 

diropres ............................................................................................................... 16 

Server Procedures ......................................................................................................... 17 

Do NotJ:ri.ng .................................................................................................................. 17 

Get File Attributes .................................................................................................. 17 

Set File Attributes ................................................................................................... 18 



Get Filesystem Root .............................................................................................. 18 

Look Up File Name ............................................................................................... 18 

Read From Symbolic Link ................................................................................. 19 

Read From File ......................................................................................................... 19 

Write to Cache .......................................................................................................... 19 

Write to File ............................................................................................................... 20 

Create File ................................................................................................................... 20 

Remove File ............................................................................................................... 20 

Rename File ................................................................................................................ 21 

Create Link to File .................................................................................................. 21 

Create Symbolic Link ........................................................................................... 21 

Create Directory ....................................................................................................... 22 

Remove Directory ................................................................................................... 22 

Read From Directory ............................................................................................. 23 

Get Filesystem Attributes ................................................................................... 24 



2.1. Introduction 

2.2. Version 2 

2 
NFS Protocol Definition 

The NFS protocol is designed to be operating system independent, but let's face 
it, it was designed in a UNIX environment. As such, it has some features which 
are very UNIXish. When in doubt about how something should work, a quick 
look at how it is done on UNIX will probably put you on the right track. 

The protocol definition is given as a set of procedures with arguments and results 
defined using XDR. A brief description of the function of each procedure should 
provide enough information to allow implementation on most machines. There 
is a different section provided for each supported version of the protocol. Most 
of the procedures, and their parameters and results, are self-explanatory. A few 
do not fit into the normal UNIX mold, however. 

The LOOKUP procedure looks up one component of a pathname at a time. It is 
not obvious at first why it does not just take the whole pathname, traipse down 
the directories, and return a file handle when it is done. There are two good rea­
sons not to do this. First, patbnames need separators between the directory com­
ponents, and different operating systems use different separators. We could 
define a Network Standard Pathname Representation, but then every pathname 
would have to be parsed and converted at each end. Second, if pathnames were 
passed, the server would have to keep track of the mounted filesystems for all of 
its clients, so that it could break the pathname at the right point and pass the 
remainder on to the correct server. 

Another procedure which might seem strange to UNIX people is the READD IR 
procedure. What READD IR does is provide a network standard fonnat for 
representing directories. The same argument as above could have been used to 
justify a READDIR procedure that returns only one directory entry per call. The 
problem is efficiency. Directories can contain many entries, and a remote call to 
return each would just be too slow. 

The released version of the NFS protocol is actually the second. Even in the 
second version, there are various obsolete procedures and parameters, which will 
probably be removed in later versions. 

9 Revision B of 17 February 1986 



10 NFS Protocol Spec 

Server/Client Relationship 

Permission Issues 

The NFS protocol is designed to allow servers to be as simple and general as pos­
sible. Sometimes the simplicity of the server can be a problem, if the client 
wants to implement complicated filesystem semantics. 

For example, UNIX allows removal of open files. A process can open a file and, 
while it is open, remove it from the directory. The file can be read and written as 
long as the process keeps it open, even though the file has no name in the filesys­
tern. It is impossible for a stateless server to implement these semantics. The 
client can do some tricks like renaming the file on remove, and only removing it 
on close. We believe that the server provides enough functionality to implement 
most filesystem semantics on the client. 

Every NFS client can also be a server, and remote and local mounted file systems 
can be freely intermixed. This leads to some interesting problems when a client 
travels down the directory tree of a remote file system and reaches the mount 
point on the server for another remote filesystem. Allowing the server to follow­
ing the second remote mount means it must do loop detection, server lookup, and 
user revalidation. Instead, we decided not to let clients cross a server's mount 
point. When a client does a LOOKUP on a directory that the server has mounted 
a filesystem on, the client sees the underlying directory instead of the mounted 
directory. A client can do remote mounts that match the server's mount points to 
maintain the server's view. 

The NFS protocol, strictly speaking, does not define the permission checking 
used by servers. However, it is expected that a server will do normal UNIX per­
mission checking using AUTH _UNIX style authentication as the basis of its pro­
tection mechanism. The server gets the client's effective uid, effective gid and 
groups on each call, and uses them to check permission. There are various prob­
lems with this method that can been resolved in interesting ways. 

Using uid and gid implies that the client and server share the same uid list. 
Every server and client pair must have the same mapping from user to uid and 
from group to gid. Since every client can also be a server this tends to imply that 
the whole network shares the same uid! gid space. This is acceptable for the 
short term, but a more workable network authentication method will be necessary 
before long. 

Another problem arises due to the semantics of open. UNIX does its permission 
checking at open time and then that the file is open, and has been checked on 
later read and write requests. With stateless servers this breaks down, because 
the server has no idea that the file is open and it must do permission checking on 
each read and write call. On a local filesystem, a user can open a file then change 
the permissions so that no one is allowed to touch it, but will still be able to write 
to the file because it is open. On a remote filesystem, by contrast, the write 
would fail. To get around this problem the server's pennission checking algo­
rithm should allow the owner of a file to access it no matter what the pennissions 
are set to. 

A similar problem has to do with paging in from a file over the network. The 
UNIX kernel checks for execute pennission before opening a file for demand pag­
ing, then reads blocks from the open file. The file may not have read pennission 

Revision B of 17 February 1986 



RPC Information 

Sizes 

Chapter 2 - NFS Protocol Definition 11 

but after it is opened it doesn't matter. An NFS server can't tell the difference 
between a normal file read and a demand page-in read. To make this work the 
server allows reading of files if the uid given in the call has execute or read per­
mission on the file. 

In UNIX, the user ID zero has access to all files no matter what permission and 
ownership they have. This super-user permission is not allowed on the server 
since anyone who can become super-user on their workstation could gain access 
to all remote files. Instead, the server maps uid 0 to -2 before doing its access 
checking. This works as long as the NFS is not used to supply root filesystems, 
where super-user access cannot be avoided. Eventually servers will have to 
allow some kind of limited super-user access. 

Authentication 
The NFS service uses AUTH _UNIX style authentication except in the NULL 
procedure where AUTH _NONE is also allowed. 

Protocols 
NFS currently is supported on UDP/IP only. 

Constants 
These are the RPC constants needed to call the NFS service. They are given 
in decimal. 

[ PROGRAM 
VERSION 

Port Number 

100003 
2 

The NFS protocol currently uses the UDP port number 2049. This is a bug 
in the protocol and will be changed very shortly. 

] 

These are the sizes, given in decimal bytes, of various XDR structures used in the 
protocol. 

MAXDATA8192 
The maximum number of bytes of data in a READ or WRITE request. 

MAXPATHLEN 1024 
The maximum number of bytes in a patbname argument 

MAXNAMLEN 255 
The maximum number of bytes in a file name argument. 

COOKIESIZE 4 
The size in bytes of the opaque "cookie" passed by READDIR. 

FHSIZE 32 
The size in bytes of the opaque file handle. 

Revision B of 17 February 1986 



12 NFS Protocol Spec 

Basic Data Types 

stat 

The following XDR definitions are basic structures and types used in other struc­
tures later on. 

typedef enum { 
NFS_OK = 0, 
NFSERR_PERM=l, 
NFSERR_NOENT=2, 
NFSERR_IO=5, 
NFSERR_NXIO=6, 
NFSERR_ACCES=13, 
NFSERR_EXIST=17, 
NFSERR _ NODEV=19, 
NFSERR_NOTDIR=20, 
NFSERR_ISDIR=21, 
NFSERR_FBIG=27, 
NFSERR_NOSPC=28, 
NFSERR_ROFS=30, 
NFSERR_NAMETOOLONG=63 , 
NFSERR~OTEMPTY=66, 

NFSERR_DQUOT=69, 
NFSERR_STALE=70, 
NFSERR WFLUSH=99 

stat; 

The stat type is returned with every procedure's results. A value ofNFS_OK 
indicates that the call completed successfully and the results are valid. The other 
values indicate some kind of error occurred on the server side during the servic­
ing of the procedure. The error values are derived from UNIX error numbers. 

NFSERR PERM 
Not owner. The caller does not have correct ownership to perform the 
requested operation. 

NFSERR NOENT 
No such file or directory. The file or directory specified does not exist. 

NFSERR 10 
110 error. Some sort of hard error occurred when the operation was in pro­
gress. This could be a disk error, for example. 

NFSERR NXIO 
No such device or address. 

NFSERR ACCES 
Permission denied. The caller does not have the correct permission to per­
form the requested operation. 

NFSERR EXIST 
File exists. The file specified already exists. 

NFSERR NODEV 
No such device. 

Revision B of 17 February 1986 



ftype 

fhandle 

Chapter 2 - NFS Protocol Definition 13 

NFSERR NOTDIR 
Not a directory. The caller specified a non-directory in a directory operation. 

NFSERR ISDIR 
Is a directory. The caller specified a directory in a nort-directory operation. 

NFSERR FBIG 
File too large. The operation caused a file to grow beyond the server's limit. 

NFSERR NOSPC 
No space left on device. The operation caused the server's filesystem to 
reach its limit. 

NFSERR ROFS 
Read-only filesystem. Write attempted on a read-only filesystem. 

NFSERR NAMETOOLONG 
File name too long. The file name in an operation was too long. 

NFSERR NOTEMPTY 
Directory not empty. Attempted to remove a directory that was not empty. 

NFSERR _DQUOT 
Disk quota exceeded. The client's disk quota on the server has been 
exceeded. 

NFSERR STALE 
The fhandle given in the arguments was invalid. That is, the file referred 
to by that file handle no longer exists, or access to it has been revoked. 

NFSERR WFLUSH 
The server's write cache used in the WRITECACHE call got flushed to disk. 

typedef enum { 
NFNON = 0, 
NFREG = 1, 
NFDIR = 2, 
NFBLK = 3, 
NFCHR = 4, 
NFLNK = 5 

ftype; 

The enumeration ft ype gives the type of a file. The type NFNON indicates a 
non-file, NFREG is a regular file, NFDIR is a directory, NFBLK is a block-special 
device, NFCHR is a character-special device, and NFLNK is a symbolic link. 

( typedef opaque fhandle[FHSIZE]; 

The fhandle is the file handle that the server passes to the client. All file 
operations are done using file handles to refer to a file or directory. The file han­
dle can contain whatever information the server needs to distinguish an indivi­
dual file. 

J 

Revision B of 17 February 1986 



14 NFS Protocol Spec 

timeval 

fattr 

typedef struct { 
unsigned seconds; 
unsigned useconds; 

timeval; 

The timeval structure is the number of seconds and microseconds since mid­
night January 1, 1970 Greenwich Mean Time. It is used to pass time and date 
information. 

typedef struct { 
ftype type; 
unsigned mode; 
unsigned nlink; 
unsigned uid; 
unsigned gid; 
unsigned size; 
unsigned blocksize; 
unsigned rdev; 
unsigned blocks; 
unsigned fsid; 
unsigned fileid; 
timeval atime; 
timeval mtime; 
timeval ctime; 

fattr; 

The fattr structure contains the attributes of a file; type is the type of the file; 
nl ink is the number of hard links to the file (the number of different names for 
the same file); uid is the user identification number of the owner of the file; gid 
is the group identification number of the group of the file; s i z e is the size in 
bytes of the file; blocksize is the size in bytes of a block of the file; rdev is 
the device number of the file if it is type NFCHR or NFBLK; block s is the 
number of blocks the file takes up on disk; f sid is the file system identifier for 
the filesystem containing the file; f ileid is a number that uniquely identifies 
the file within its filesystem; atime is the time when the file was last accessed 
for either read or write; mt ime is the time when the file data was last modified 
(written); and ctime is the time when the status of the file was last changed. 
Writing to the file also changes ctime if the size of the file changes. 

Mode is the access mode encoded as a set of bits. The bits are the same as the 
mode bits returned by the stat (2) system call in UNIX. Notice that the file type is 
specified both in the mode bits and in the file type. This is really a bug in the 
protocol and should be fixed in future versions. The descriptions given below 
specify the bit positions using octal numbers. 

0040000 This is a directory. The type field should be NFDIR. 

0020000 This is a character special file. The type field should be NFCHR. 

Revision B of 17 February 198f 



sattr 

filename 

path 

Chapter 2 - NFS Protocol Definition 15 

0060000 This is a block special file. The type field should be NFBLK. 

0100000 This is a regular file. The type field should be NFREG. 

0120000 This is a symbolic link file. The type field should be NFLNK. 

0140000 This is a named socket. The type field should be NFNON. 

0004000 Set user id on execution. 

0002000 Set group id on execution. 

0001000 Save swapped text even after use. 

0000400 Read permission for owner. 

0000200 Write permission for owner. 

0000100 Execute and search permission for owner. 

0000040 Read permission for group. 

0000020 Write permission for group. 

0000010 Execute and search permission for group. 

0000004 Read permission for others. 

0000002 Write permission for others. 

0000001 Execute and search permission for others. 

typedef struct 
unsigned mode; 
unsigned uid; 
unsigned gid; 
unsigned size; 
timeval atime; 
timeval mtime; 

sattr; 

The sat t r structure contains the file attributes which can be set from the client. 
The fields are the same as for fattr above. A size of zero means the file 
should be truncated. A value of -1 indicates a field that should be ignored. 

(typedef string filename<MAXNAMLEN>; 

The type filename is used for passing file names or pathname components. 

] 

[
typedef string path<MAXPATHLEN>; J 

",---. --------
The type path is a pathname. The server considers it as a string with no internal 
structure, but to the client it is the name of a node in a filesystem tree. 

Revision B of 17 February 1986 



16 NFS Protocol Spec 

attrstat 

diropargs 

diropres 

typedef union switch (stat status) { 
NFS OK: 
fattr attributes; 
default: 
struct {} 

attrstat; 

The attrstat structure is a common procedure result. It contains a status 
and, if the call succeeded, it also contains the attributes of the file on which the 
operation was done. 

typedef struct 
fhandle dir: 
filename 

diropargs; 
name; 

The diropargs structure is used in directory operations. The fhandle dir 
is the directory in which to find the file name. A directory operation is one in 
which the directory is affected. 

typedef union switch (stat status) { 
NFS OK: 
struct { 

fhandle file; 
fattr 

default: 
struct {} 

diropres; 

attributes: 

The results of a directory operation are returned in a diropres structure. If the 
call succeeded a new file handle file and the attributes associated with 
that file are returned along with the status. 

~~sun 
~ mlcrosystems 

Revision B of 17 February 1986 



Server Procedures 

Do Nothing 

Get File Attributes 

Chapter 2 - NFS Protocol Definition 17 

The following sections define the RPC procedures supplied by a NFS server. 
The RPC procedure number and version are given in the header, along with the 
name of the prodedure. The synopsis of prodecures has this format: 

<proc *>. <proc name> ( <arguments> ) returns ( <results> 
<argument declarations> 
<results declarations> 

In the first line, proc name is the name of the procedure, arguments is a list of 
the names of the arguments, and results is a list of the names of the results. The 
second and third lines give the XDR argument declarations and results declara­
tions. Afterwards, there is a description of what the procedure is expected to do, 
and how its arguments and results are used. If there are bugs or problems with 
the procedure, they are listed at the end. 

All of the procedures in the NFS protocol are assumed to be synchronous. When 
a procedure returns to the client, the client can assume that the operation has 
completed and any data associated with the request is now on stable storage. For 
example, a client WRITE request may cause the server to update data blocks, 
filesystem information blocks (such as indirect blocks in UNIX), and file attribute 
information (size and modify times). When the WRITE returns to the client, it 
can assume that the write is safe, even in case of a server crash, and it can discard 
the data written. This is a vel)' important part of the statelessness of the server. 
If the server waited to flush data from remote requests the client would have to 
save those requests so that it could resend them in case of a server crash. 

Procedure 0, Version 2. 

(~O __ ._N_F_S_P_R_O_C ___ NU __ L_L ___ ( __ ) __ r_e_t_u_r_n_s __ ( __ ) __________________________ --JJ 

This procedure does no work. It is made available in all RPC services to allow 
server response testing and timing. 

Procedure 1, Version 2. 

1. NFSPROC GETATTR (file) returns (reply) 
fhandle file; 
attrstat reply; 

If reply. status is NFS_OK then reply. attributes contains the attri­
butes for the file given by file. 

Bugs: the rdev field in the attributes structure is a UNIX device specifier. It 
should be removed or generalized. 

Revision B of 17 February 1986 



18 NFS Protocol Spec 

Set File Attributes 

Get Filesystem Root 

Look Up File Name 

Procedure 2, Version 2. 

2. NFSPROC SETATTR (file, attributes) returns (reply) 
fhandle file; 
sattr attributes; 
attrstat reply; 

The attributes argument contains fields which are either-lor are the new 
value for the attributes of file. Ifreply. status is NFS_OK then 
reply. attributes has the attributes of the file after the setattr opera­
tion has completed. 

Bugs: the use of-l to indicate an unused field in attributes is wrong. 

Procedure 3, Version 2. 

( 3. NFSPROC_ROOT ( ) returns ( ) ] 
Obsolete. This procedure is no longer used because finding the root file handle 
of a file system requires moving pathnames between client and server. To do this 
right we would have to define a network standard representation of pathnames. 
Instead, the function of looking up the root file handle is done by the 
MNTPROC MNT procedure (see section entitled Mount Protocol Definition for 
details). 

Procedure 4, Version 2. 

4. NFSPROC LOOKUP (which) returns (reply) 
diropargs which; 
diropres reply; 

If reply . status is NFS_OK then reply. file and 
reply. attributes are the file handle and attributes for the file 
which. name in the directory given by which. dir. 

Bugs: there is some question as to what is the correct reply to a LOOKUP request 
when which. name is a mount point on the server for a remote mounted filesys­
tem. Currently, we return the fhandle of the underlying directory. This is not 
completely acceptable, as the clients see a different view of the filesystem than 
the server does. 

Revision B of 17 February 1986 



Read From Symbolic Link 

Read From File 

Write to Cache 

Chapter 2 - NFS Protocol Definition 19 

Procedure 5, Version 2. 

5. NFSPROC READLINK (file) returns (reply) 
fhandle file; 
union switch (stat status) { 

NFS OK: 
path data; 
default: 
struct {} 

reply; 

If status has the value NFS_OK then reply. data is the data in the sym­
bolic link given by file. 

Procedure 6, Version 2. 

6. NFSPROC_READ (file, offset, count, totalcount) 
returns (reply) 
fhandle file; 
unsigned offset; 
unsigned count; 
unsigned totalcount; 
union switch (stat status) 

NFS OK: 
fattr attributes; 
string data<MAXDATA>; 
default: 
struct {} 

reply; 

Returns up to count bytes of data from the file given by file, starting at 
off s et bytes from the beginning of the file. The first byte of the file is at offset 
zero. The file attributes after the read takes place are returned in at t r ibu t e s . 

Bugs: the argument totalcount is unused, and should be removed. 

Procedure 7, Version 2. 

(~7 __ ._N_F_S_P_R_O_C ___ WR __ I_T_E_C_A_C_H_E __ ( __ ) __ r_e_t_u_r_n_s __ ( __ ) ____________________ ~] 
Obsolete. 

Revision B of 17 February 1986 



20 NFS Protocol Spec 

Write to File 

Create File 

Remove File 

Procedure 8, Version 2. 

8. NFSPROC WRITE (file,beginoffset,offset,totalcount,data) 
returns (reply) 
fhandle file; 
unsigned beginoffset; 
unsigned offset; 
unsigned totalcount; 
string data<MAXDATA>; 
attrstat reply; 

Writes data beginning offset bytes from the beginning of file. The first 
byte of the file is at offset zero. If reply. status is NFS_OK then 
reply. attributes contains the attributes of the file after the write has com­
pleted. The write operation is atomic. Data from this WRITE will not be mixed 
with data from another client's WRITE. 

Bugs: the arguments beginoffset and totalcount are ignored and should 
be removed. 

Procedure 9, Version 2. 

9. NFSPROC CREATE (where, attributes) returns (dir) 
diropargs where; 
sattr attributes; 
diropres dir; 

The file where. name is created in the directory given by where. dir. The 
initial attributes of the new file are given by attributes. A 
reply. status ofNFS_OK indicates that the file was created and 
reply. file and reply. attributes are its file handle and attributes. 
Any other reply. status means that the operation failed and no file was 
created. 

Bugs: this routine should pass an exclusive create flag meaning, create the file 
only if it is not already there. 

Procedure 10, Version 2. 

10. NFSPROC_REMOTE (which) returns (status) 
diropargs which; 
stat status; 

The file which. name is removed from the directory given by which. dire A 
s tat u s of NF S _OK means the directory entry was removed. 

Revision B of 17 February 198(i 



~ename File 

Create Link to File 

Create Symbolic Link 

Chapter 2 - NFS Protocol Definition 21 

Procedure 11, Version 2. 

11. NFSPROC RENAME (from, to) returns (status) 
diropargs from; 
diropargs to; 
stat status; 

The existing file from. name in the directory given by from. dir is renamed 
to to. name in the directory given by to. dire If status is NFS_OK the file 
was renamed. The RENAME operation is atomic on the server; it cannot be inter­
rupted in the middle. 

Procedure 12, Version 2. 

12. NFSPROC_LINK (from, to) returns (status) 
fhandle from; 
diropargs to; 
stat status; 

Creates the file to . name in the directory given by to . dir, which is a hard 
link to the existing file given by from. If the return value of status is 
NF S _ OK a link was created. Any other return value indicates an error and the 
link is not created. 

A hard link should have the property that changes to either of the linked files are 
reflected in both files. When a hard link is made to a file, the attributes for the 
file should have a value for nlink which is one greater than the value before the 
link. 

Procedure 13, Version 2. 

13. NFSPROC SYMLINK (from, to, attributes) returns (status) 
diropargs from; 
path to; 
sattr attributes; 
stat status; 

Creates the file from. name with ftype NFLNK in the directory given by 
from. dire The new file contains the patbname to and has initial attributes 
given by attributes. If the return value of status is NFS_OK a link was 
created. Any other return value indicates an error and the link is not created. 

A symbolic link is a pointer to another file. The name given in to is not inter­
preted by the server, just stored in the newly created file. A READLINK opera­
tion returns the data to the client for interpretation. 

Bugs: on UNIX servers the attributes are never used, since symbolic links always 
have mode 0777. 

Revision B of 17 February 1986 



22 NFS Protocol Spec 

Create Directory 

Remove Directory 

Procedure 14, Version 2. 

14. NFSPROC MKDIR (where, attributes) returns (reply) 
diropargs where; 
sattr attributes; 
diropres reply; 

The new directory where. name is created in the directory given by 
where. dire The initial attributes of the new directory are given by attri­
butes. A reply. status ofNFS_OK indicates that the new directory was 
created and reply. file and reply. attributes are its file handle and 
attributes. Any other reply. status means that the operation failed and no 
directory was created. 

Procedure 15, Version 2. 

15. NFSPROC RMDIR (which) returns (status) 
diropargs 
stat 

which; 
status; 

The existing, empty directory whi ch . name in the directory given by 
which. dir is removed If status is NFS_OK the directory was removed. 

Revision B of 17 February 1986 



Read From Directory 

Chapter 2 - NFS Protocol Definition 23 

Procedure 16, Version 2. 

16. NFSPROC READDIR (dir, cookie, count) returns (entries) 
fhandle dir; 
opaque cookie[COOKIESIZE]; 
unsigned count; 
union switch (stat status) { 

NFS OK: 
typedef union switch (boolean valid) { 

TRUE: 
struct { 

unsigned fileid; 
filename name; 
opaque cookie[COOKIESIZE]; 
entry 

FALSE: 
struct {} 

entry; 
boolean eof; 
default: 

entries; 

nextentry; 

Returns a variable number of directory entries, with a total size of up to count 
bytes, from the directory given by dir. Each entry contains a fileid which 
is a unique number to identify the file within a filesystem, the name of the file, 
and a cookie which is an opaque pointer to the next entry in the directory. The 
cookie is used in the next READDIR call to get more entries starting at a given 
point in the directory. The special cookie zero (all bits zero) can be used to get 
the entries starting at the beginning of the directory. The fileid field should 
be the same number as the fileid in the the attributes of the file (see the sec­
tion entitledfattr under Basic Data Types). The eof flag has a value of TRUE 
if there are no more entries in the directory; valid is used to mark the end of 
the entries. If the returned value of status is NFS_OK then it is followed by a 
variable number of entries . 

• \sun 
~~ microsyslems 

Revision B of 17 February 1986 



24 NFS Protocol Spec 

Get Filesystem Attributes Procedure 17, Version 2. 

17. NFSPROC STATFS (file) returns (reply) 
fhandle file; 
union switch (stat status) { 

NFS OK: 
struct { 

unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

fsattr; 
default: 
struct {} 

reply; 

tsize; 
bsize; 
blocks; 
bfree; 
bavail; 

If reply. status is NFS_OK then reply. fsattr gives the attributes for 
the filesystem that contains file. The attribute fields contain the following 
values: 

tsize The optimum transfer size of the server in bytes. This is the number of 
bytes the server would like to have in the data part of READ and 
WRI TE requests. 

bsize The block size in bytes of the filesystem. 

blocks The total number of bsize blocks on the filesystem. 

bfree The number of free b s i z e blocks on the filesystem. 

bavail The number ofbsize blocks available to non-privileged users. 

Bugs: this call does not work well if a filesystem has variable size blocks. 

~"sun ~ microsystems 
Revision B of 17 February 1986 



3 
Mount Protocol Definition 

Mount Protocol Definition ..................................................................................................... 27 

3.1. Introduction ......................................................................................................................... 27 

3.2. Version 1 .............................................................................................................................. 27 

RPC Infonnation ........................................................................................................... 27 

Sizes ...................................................................................................................................... 28 

Basic Data Types .......................................................................................................... 28 

fhandle ................................................................................................................... 28 

fhstatus ............................................................................................................... 28 

dirpath ................................................................................................................... 28 

name ............................................................................................................................ 28 

Server Procedures ......................................................................................................... 29 

Do N otlling .................................................................................................................. 29 

Add Mount Entry ..................................................................................................... 29 

Return Mount Entries ............................................................................................ 29 

Remove Mount Entry ............................................................................................ 30 

Remove All Mount Entries ................................................................................ 30 

Return Export List .................................................................................................. 30 





3.1. Introduction 

3.2. Version 1 

RPC Information 

3 
Mount Protocol Definition 

The mount protocol is separate from, but related to, the NFS protocol. It pro­
vides all of the operating system specific services to get the NFS off the ground 
-looking up path names, validating user identity, and checking access permis­
sions. Clients use the mount protocol to get the first file handle, which allows 
them entry into a remote filesystem. 

The mount protocol is kept separate from the NFS protocol to make it easy to 
plug in new access checking and validation methods without changing the NFS 
server protocol. 

Notice that the protocol definition implies stateful servers because the server 
maintains a list of client's mount requests. The mount list information is not crit­
ical for the correct functioning of either the client or the server. It is intented for 
advisory use only, for example, to warn possible clients when a server is going 
down. 

Version one of the mount protocol communicates with the version two of the 
NFS protocol. The only connecting point is the fhandle structure, which is the 
same for both protocols. 

Authentication 
The mount service uses AUTH_UNIX style authentication only. 

Protocols 
The mount service is currently supported on UDP/IP only. 

Constants 
These are the RPC constants needed to call the MOUNT service. They are 
given in decimal. 

[
PROGRAM 100005 J 

,VERSION 1 _ 

Port Number 
Consult the server's portmapper, described in the RPC Protocol 
Specification, to find which port number the mount service is registered on. 

27 Revision B of 17 February 1986 



28 NFS Protocol Spec 

Sizes These are the sizes given in decimal bytes of various XDR structures used in the 
protocol. 

Basic Data Types 

fhandle 

fhstatus 

dirpath 

name 

MNTPATHLEN 1024 
The maximum number of bytes in a patbname argument 

MNTNAMLEN 255 
The maximum number of bytes in a name argument. 

FHSIZE 32 
The size in bytes of the opaque file handle. 

This section presents the data types used by the NFS. 

[typedef opaque fhandle[FHSIZE]; 

The fhandle is the file handle that the server passes to the client. All file 
operations are done using file handles to refer to a file or directory. The file han­
dle can contain whatever information the server needs to distinguish an indivi­
dual file. 

This is the same as the fhandle XDR definition in version 2 of the NFS proto­
col; see the section on fhandle under Basic Data Types. 

typedef union switch (unsigned status) { 
0: 
fhandle directory; 
default: 
struct {} 

If a status of zero is returned, the call completed successfully, and a file han­
dle for the directory follows. A non-zero status indicates some sort of error. 
In this case the status isa UNIX error number. 

] 

(typedef string dirpath<MNTPATHLEN>; J 
The type dirpa this a normal UNIX patbname of a directory. 

( typedef string name<MNTNAMLEN>; J 
The type name is an arbitrary string used for various names. 

Revision B of 17 February 1986 



Server Procedures 

Do Nothing 

Add Mount Entry 

Return Mount Entries 

Chapter 3 - Mount Protocol Definition 29 

The following sections define the RPC procedures supplied by a mount server. 
The RPC procedure number and version are given in the header, along with the 
name of the procedure. The synopsis of procedures has this format: 

<proc #>. <proc name> ( <arguments> ) returns ( <results> 
<argument declarations> 
<results declarations> 

In the first line, proc name is the name of the procedure, arguments is a list of 
the names of the arguments, and results is a list of the names of the results. The 
second and third lines give the XDR argument declarations and results declara­
tions. Afterwards, there is a description of what the procedure is expected to do, 
and how its arguments and results are used. If there are bugs or problems with 
the procedure, they are listed at the end. 

Procedure 0, Version 1. 

(0. MNTPROC_NULL ( ) returns ( ) 

This procedure does no work. It is made available in all RPC services to allow 
server response testing and timing. 

Procedure 1, Version 1. 

1. MNTPROC_MNT (directory) returns (reply) 
dirpath dirnamei 
fhstatus reply; 

If reply. stat us is 0, reply. directory contains the file handle for the 
directory dirname. This file handle may be used in the NFS protocol. This 
procedure also adds a new entry to the mount list for this client mounting dir­
name. 

Procedure 2, Version 1. 

2. MNTPROC_DUMP ( ) returns (mountlist) 
union switch (boolean more_entries) 

TRUE: 
struct { 

name hostname; 
dirpath directory; 
mountlist nextentry; 

FALSE: 
struct {} 

mountlisti 

Returns the list of remote mounted filesystems. The mountlist contains one 

J 

Revision B of 17 February 1986 



30 NFS Protocol Spec 

Remove Mount Entry 

Remove All Mount Entries 

Return Export List 

entry for each hostname and directory pair. 

Procedure 3, Version 1. 

3. MNTPROC_UMNT (directory) returns ( ) 
dirpath directory; 

Removes the mount list entry for directory. 

Procedure 4, Version 1. 

( 4. MNTPROC_UMNTALL ( ) returns ( ) 

Removes all of the mount list entries for this client. 

Procedure 5, Version 1. 

5. MNTPROC EXPORT ( ) returns (exportlist) 
union switch (boolean more_entries) { 

TRUE: 
struct { 

dirpath filesys; 
typedef union switch (boolean more_groups) { 
TRUE: 

struct 
name 
groups 
} 

FALSE: 

grname; 
nextgroup; 

struct {} 
} groups; 
mountlist nextentry; 

FALSE: 
struct {} 

exportlist; 

Returns in exportlist a variable number of export list entries. Each ent.ry 
contains a filesystem name and a list of groups that are allowed to import it. The 
file system name is in exportlist. filesys, and the group name is in 
exportlist.groups.grname. 

Bugs: the exportlist should contain more information about the status of the 
filesystem, such as a read-only flag. 

Revision B of 17 February 1986 



Index 

A 
atime,14 
attributes, 16, 18, 19,20,21,22 
attrstat, 16 
~UTH _NONE, 3, 11 
~UTH_UNIX, 3,10, 11,27 

B 
beginoffset,20 
blocks, 14 
blocksize, 14 
bsize,24 

C 
cookie, 23 
COOKIESIZE,11 
count, 4, 19,23 
ctime,14 

D 
data, 4, 19,20 
data types, 12, 28 
dir, 16,23 
directory, 28, 30 
dirname,29 
diropargs, 16 
diropres, 16 
dirpath, 28 
DSIZE,4 

E 
entries, 23 
entry,23 
eof, 23 
exportlist,30 
exportlist.filesys,30 
exportlist.groups.grname,30 
External Data Representation (XDR), 4 

F 
fattr, 14, 15 
fhandle, 13, 16, 18,27,28 
FHSIZE, 11,28 
fhstat us, 28 

-31-

file, 16,17, 18,19,20,24 
filel,4 
file2,4 
fileid, 14,23 
filename, 15 
from, 21 
from. dir, 21 
from. name, 21 
fsid, 14 
ftype,13 

G 
gid,14 

H 
hostname, 30 

L 
LOOKUP, 9, 10 

M 
MAXDATA, 11 
MAXNAMLEN,11 
MAXPATHLEN, 11 
MNTNAMLEN, 28 
MNTPATHLEN, 28 
MNTPROC_DUMP,29 
MNTPROC_EXPORT,30 
MNTPROC _MNT, 18,29 
MNTPROC _NULL, 29 
MNTPROC_UMNT,30 
MNTPROC_UMNTALL,30 
Mode, 14 
mount protocol, 27 
mountlist,29 
mtime,14 

N 
name, 4, 16, 23, 28 
NFBLK, 13, 14, 15 
NFCHR, 13, 14 
NFDIR, 13, 14 
NFLNK, 13, 15, 21 
NFNON, 13, 15 



Index Continued 

NFREG, 13, 15 
NFS protocol definition, 9 
NFS _ERROR, 4 
NFS_OK,4,12,17,18,20,21,22,23,24 
NF SERR _ACCES, 12 
NFSERR_DQUOT,13 
NFSERR_EXIST,12 
NFSE~FBIG, 13 
NFSERR_IO,12 
NF SE~ I SD IR, 13 
NFSERR_NAMETOOLONG,13 
NFSERR_NODEV,12 
NFSERR_NOENT,12 
NFSERR_NOSPc,13 
NFSERR_ NOTDIR, 13 
NFSERR_NOTEMPTy,13 
NFSERR_NXIO,12 
NFSERR _PERM, 12 
NFSERR_ROFS,13 
NFSERR_STALE,13 
NFSERR_WFLUSH,13 
NF SP ROC_CREATE, 20 
NFSPROC_GETATTR, 17 
NFSPROC _LINK, 21 
NF SP ROC_LOOKUP, 18 
NFSPROC_MKDIR, 22 
NFSPROC_NULL,17 
NFSPROC_READ,19 
NFSPROC_READDIR, 23 
NFSPROC_READLINK,19 
NF SP ROC_REMOVE, 20 
NFSPROC_RENAME,21 
NFSPROC _ RMDIR, 22 
NFSPROC_ROOT,18 
NFSPROC _ SETATTR, 18 
NFSPROC_STATFS,24 
NFSPROC _ SYMLINK, 21 
NFSPROC_WRITE,20 
NFSPROC_WRITECACHE,19 
nlink, 14, 21 
NULL, II 

o 
offset, 19,20 

p 
path, 15 
permission issues, 10 

R 
rdev, 14, 17 
READ, II 
READDIR, 9, 11 
READLINK,21 
Remote Procedure Call (RPC), 3 
RENAME, 21 
reply. attributes, 17,18,20,22 
reply. data, 19 

-32-

reply. directory, 29 
reply. file, 18,20,22 
reply. fsattr, 24 
reply. status, 17, 18,20,22,24,29 
RPC,3 
RPC information, 11, 27 

S 
sattr,15 
server procedures, 17, 29 
server/client relationship, 10 
setattr,18 
SIZE, 4, 14, 15 
size of XDR structures, 11, 28 
stat, 12 
stateless servers, 4 
status, 4, 16, 19,20,21,22,23,28 

T 
timeval,14 
to, 21 
to.dir,21 
to. name, 21 
total count, 19,20 
TRUE, 23 
type, 14, 15 

u 
uid,14 

V 
valid, 23 
Version 1 of mount protocol, 27 
Version 2 of NFS protocol, 9 

W 
where. dir, 20, 22 
where. name, 20,22 
which. dir, 18,20,22 
which.name, 18,20,22 
WRITE, 11,20,24 
WRITECACHE,13 

x 
XDR,3 



Yellow Pages 
Protocol Specification 





Contents 

Chapter 1 Introduction and Terminology ............................................................... 3 

1.1. RPC - Remote Procedure Call .............................................................................. 4 

1.2. XDR - External Data Representation ............................................................... 4 

Chapter 2 yP Database Servers ..................................................................................... 9 

2.1. Maps and Map Operations ......................................................................................... 9 

Map Structure .................................................................................................................. 9 

Match Operation ............................................................................................................ 9 

Map Entry Enumeration ............................................................................................ 9 

Entire Map Retrieval ................................................................................................... 9 

Map Update ...................................................................................................................... 10 

2.2. Master and Slave yP Database Servers .............................................................. 10 

2.3. Map Propagation and Consistency........................................................................ 10 

Functions to Aid in Map Propagation ............................................................... 10 

2.4. Domains ................................................................................................................................ 10 

2.5. Non-features ....................................................................................................................... 11 

Map Update Within the yP ..................................................................................... 11 

Version Commitment Across Multiple Requests ....................................... 11 

Guaranteed Global Consistency........................................................................... 11 

Access Control ............................................................................................................... 11 

2.6. yP Database Server Protocol Definition ............................................................ 11 

RPC Constants ................................................................................................................ 11 

Other Manifest Constants ......................................................................................... 11 

Remote Procedure Return Values ....................................................................... 12 

-i-



Contents Continued 

ypstat ...................................................................................................................... 1~ 

ypxfrstat ............................................................................................................ 1~ 

Basic Data Structures ................................................................................................. 1 ~ 

domainname ......................................................................................................... 1 ~ 

mapname ................................................................................................................... 13 

peername ............................................................................................................... 13 

keydat ...................................................................................................................... 13 

valdat ...................................................................................................................... 13 

ypmapyarms ..................................................................................................... 13 

ypre~xfr ............................................................................................................ 13 

ypresp _ val ......................................................................................................... 14 

ypresp_key_val ........................................................................................... 14 

ypresp_master ............................................................................................... 14 

ypresp _ order .................................................................................................. 14 

ypresp_all......................................................................................................... 14 

ypresp _ xfr ......................................................................................................... 14 

ypmaplist ............................................................................................................ 14 

ypresp_maplist ........................................................................................... 15 

YP Database Server Remote Procedures ......................................................... 16 

Do Nothing .................................................................................................................. 16 

Do You Serve This Domain? ............................................................................ 16 

Answer Only If You Serve This Domain .................................................. 16 

Return Value of a Key .......................................................................................... 16 

Get First Key-Value Pair in Map ................................................................... 17 

Get Next Key-Value Pair in Map ................................................................... 17 

Transfer Map .............................................................................................................. 17 

Reinitialize Internal State ................................................................................... 17 

Get All Key-Value Pairs in Map .................................................................... 18 

Get Map Master Name ......................................................................................... 18 

Get Map Order Number ....................................................................................... 18 

Get All Maps in Domain ..................................................................................... 18 

Chapter 3 yP Binders ............................................................................................................ 21 

-ii-



Contents Continued 

3.1. Introduction ......................................................................................................................... 21 

3.2. yP Binder Protocol Definition ................................................................................. 21 

RPC Constants ................................................................................................................ 22 

Oilier Manifest Constants ......................................................................................... 22 

ypbind_resptype ........................................................................................ 22 

ypbinderr ............................................................................................................ 22 

Basic Data Structures ................................................................................................. 22 

domainname ......................................................................................................... 22 

ypbind_binding ........................................................................................... 22 

ypbind_resp ..................................................................................................... 23 

ypbind_setdom ............................................................................................... 23 

YP Binder Remote Procedures ............................................................................. 23 

Do N othing .................................................................................................................. 23 

Get Current Binding for a Domain ................................................................ 23 

Set Domain Binding .............................................................................................. 24 

-iii-





1 
Introduction and Terminology 

Introduction and Terminology ............................................................................................ 3 

1.1. RPC - Remote Procedure Call .............................................................................. 4 

1.2. XDR - External Data Representation ............................................................... 4 





1 
Introduction and Terminology 

The Yellow Pages (YP), Sun's distributed lookup service, is a network service 
providing read access to a replicated database. The lookup service is provided by 
a set of yP database servers. The client interface to this service uses the Remote 
Procedure Call (RPC) mechanism. 

Translating or mapping a name to its value is one of the most common opera­
tions performed in computer systems. Common examples are the translation of a 
variable name to a virtual memory address, the translation of a user name to a 
system ID or list of capabilities, and the translation of a network node name to an 
internet address. There are two fundamental read-only operations that can be 
performed on a map: match and enumerate. Match means to look up a name 
(which we call a key) and return its current value. Enumerate means to return 
each key-value pair in tum. 

The yP supplies match and enumerate operations in a network environment, 
where high availability and reliability are required. It provides that availability 
and reliability by replicating both databases and database servers on multiple 
nodes within a single local net, and within the internet. The database is repli­
cated, but not distributed: all changes are made at a single server and eventually 
propagate to the remaining servers without locking. The yP is appropriate for an 
environment in which changes to the mapping databases occur on the order of 
tens per day. 

The yP operates on an arbitrary number of map databases. Map names provide 
the lower of two levels of a naming hierarchy. Maps are themselves grouped into 
named sets, called domains. Domain names provides a second, higher level of 
naming. Map names must be unique within a domain, but may be duplicated in 
different domains. The yP client interface requires that both a map name and a 
domain name be supplied to perform match and enumeration operations. 

The yP achieves high availability by replication. One area not addressed by the 
protocol which has to be addressed by the implementors is global consistency 
among the replicated copies of the database. Every implementation should be 
designed so that at steady state a request yields the same result when it is made of 
any yP database server. Update and update-propagation mechanisms must be 
implemented to supply the required degree of consistency. 

3 Revision B of 17 February 1986 



4 yP Protocol Spec 

1.1. RPC - Remote 
Procedure Call 

1.2. XDR - External Data 
Representation 

Sun's Remote Procedure Call (RPC) mechanism defines a paradigm for interpro­
cess communication modeled on function calls. Clients call functions that 
optionally return values. All inputs and outputs to the functions are in the 
client's address space. The function is executed by a server program. 

Using RPC, clients address servers by a program number (this identifies the 
application level protocol that the server speaks), and a version number. Addi­
tionally, each server procedure has a procedure number assigned to it. 

In an internet environment, clients must also know the server's host internet 
address, and the server's rendezvous port. The server listens for service requests 
at ports associated with a particular transport protocol - TCP/IP or UDP/IP. 

The format of the data structures used as inputs to and outputs from the 
remotely-executed procedures are typically defined by header files that are 
included when the client interface functions are compiled. Levels above the 
client interface package need not know any particulars of the RPC interface to 
the server. 

The Sun External Data Representation (XDR) specification establishes standard 
representations for basic data types (such as strings, signed and unsigned 
integers, and structures and unions) in a way that allows them to be transferred 
among machines with varying architectures. XDR provides primitives to encode 
(that is, translate from the local host's representation to the standard representa­
tion) and decode (translate from the standard representation to the local host's 
representation) basic data types. Constructor primitives allow arbitrarily com­
plex data types to be made from the basic types. 

The YP's RPC input and output data structures are described using XDR's data 
description language. In general, the data description language looks like the C 
language, with a few extra constructs. One such extra construct is the discrim­
inated union. This is like a C language union, in that it can hold various objects, 
but differs from it in that a discriminant indicates which object it currently holds. 
The discriminant is the first thing across the wire. Consider a simple example: 

union switch (long int) { 
1: 

string exmpl_name<16> 
0: 

unsigned int exmpl_error_code 
default: 

struct {} 

The example should be interpreted as follows: the first object to be 
encoded/decoded (that is, the discriminant) is a long integer. If it has the value 
one, the next object is a string. If the discriminant has the value zero, the next 
object is an unsigned integer. If the discriminant takes any other value, don't 
encode or decode any more data. 

Revision B of 17 February 1986 



Chapter 1 - Introduction and Terminology 5 

A string data type in the XDR data definition language adds the ability to specify 
the maximum number of elements in an byte array or string of potentially vari­
able size. For instance: 

(string domain<YPMAXDOMAIN>; 

states that the byte sequence domain may be less than or equal to YPMAX­
DOMAIN bytes long. 

An additional primitive data type is a boolean, which takes the value one to 
mean TRUE and zero to mean FALSE. 

] 

Revision B of 17 February 1986 





2 
yP Database Servers 

yP Database Servers .................................................................................................................. 9 

2.1. Maps and Map OJ)erations ......................................................................................... 9 

Map Structure .................................................................................................................. 9 

Match Operation ............................................................................................................ 9 

Map Entry Enumeration ............................................................................................ 9 

Entire Map Retrieval ................................................................................................... 9 

Map Update ...................................................................................................................... 10 

2.2. Master and Slave yP Database Servers .............................................................. 10 

2.3. Map Propagation and Consistency ........................................................................ 10 

Functions to Aid in Map Propagation ............................................................... 10 

2.4. Domains ................................................................................................................................ 10 

2.5. Non-features ....................................................................................................................... 11 

Map Update Witllin the yP ..................................................................................... 11 

Version Commitment Across Multiple Requests ....................................... 11 

Guaranteed Global Consistency ........................................................................... 11 

Access Control ............................................................................................................... 11 

2.6. yP Database Server Protocol Definition ............................................................ 11 

RPC Constants ................................................................................................................ 11 

Other Manifest Constants ......................................................................................... 11 

Remote Procedure Return Values ....................................................................... 12 

ypstat ...................................................................................................................... 12 

ypxfr stat ............................................................................................................ 12 

Basic Data Structures ................................................................................................. 13 



domainname ......................................................................................................... 13 

mapname ................................................................................................................... 13 

peername ............................................................................................................... 13 

keydat ...................................................................................................................... 13 

valdat ...................................................................................................................... 13 

ypmap yarms ..................................................................................................... 13 

ypre~xfr ............................................................................................................ 13 

ypresp_ val......................................................................................................... 14 

ypresp_key_val ........................................................................................... 14 

ypresp_master ............................................................................................... 14 

ypresp _ order .................................................................................................. 14 

ypresp _ all ......................................................................................................... 14 

ypresp_xfr ......................................................................................................... 14 

ypmaplist ............................................................................................................ 14 

ypresp _ maplist ........................................................................................... 15 

yP Database Server Remote Procedures ......................................................... 16 

Do Nothing .................................................................................................................. 16 

Do You Serve This Domain? ............................................................................ 16 

Answer Only If You Serve This Domain .................................................. 16 

Return Value of a Key .......................................................................................... 16 

Get First Key-Value Pair in Map ................................................................... 17 

Get Next Key-Value Pair in Map ................................................................... 17 

Transfer Map .............................................................................................................. 17 

Reinitialize Internal State ................................................................................... 17 

Get All Key-Value Pairs in Map .................................................................... 18 

Get Map Master Name ......................................................................................... 18 

Get Map Order Number ....................................................................................... 18 

Get All Maps in Domain ..................................................................................... 18 



~.1. Maps and Map 
Operations 

Map Structure 

Match Operation 

Map Entry Enumeration 

Entire Map Retrieval 

2 
yP Database Servers 

Maps are named sets of key-value pairs. Keys and their values are counted 
binary objects, and may be ASCII information, but need not be. The data 
comprising a map is determined by the client applications that are the final custo­
mers for the data, not by the YP. The yP has no syntactic nor semantic 
knowledge of the map contents. Neither does the yP determine or know any 
map's name. Map names are managed by the YP's clients. Conflict in the map 
names pace must be resolved by human administrators outside the yP system. 

Typical implementations for YP maps are files or database management systems. 
The design of the YP's map database is an implementation detail, and is 
unspecified by the protocol. 

The yP supports an exact match operation in the YPPROC_MATCH procedure. 
That is, if a match string and some key in the map are exactly the same, the value 
of the key is returned. No pattern matching, case conversion, or wildcarding is 
supported. 

It is possible to get the first key-value pair in a map with YPPROC _FIRS T, and 
the next key-value pair with YPPROC_NEXT. Calling "get first" once and "get 
next" until the return value indicates there are no more entries in the map will 
retrieve each entry once. Making the same calls on the same map at the same yP 

database server will enumerate all entries in the same order. The actual order, 
however, is unspecified. Enumerating a map at a different yP database server 
will not necessarily return entries in the same order. 

The YPPROC_ALL operation retrieves all key-value pairs in a map, with a single 
RPC request. This is faster than map entry enumeration, and more reliable, since 
it uses TCP. Ordering is the same as when enumeration is applied. 

9 Revision B of 17 February 1986 



10 yP Protocol Spec 

Map Update 

2.2. Master and Slave YP 
Database Servers 

2.3. Map Propagation and 
Consistency 

Functions to Aid in Map 
Propagation 

2.4. Domains 

The update of yP maps is an implementation detail which is outside the 
specification of the yP service. 

For each map, there is one yP database server, called the map's master. Map 
updates take place only on the master. An updated map should be transferred 
from the master to the rest of the yP database servers, which are slave servers 
for this map. 

It is possible for each map to have a different yP database server as its master, 01 

for all maps to have the same master, or any other combination. The choice of 
how to set up map masters is one of implementation and administrative policy. 

Getting map updates from the master to the slaves is called map propagation. 
Neither technology nor algorithms for map propagation are specified by the pro­
tocol. Map propagation may be entirely manual: for instance, a person could 
copy the maps from the master to the slaves at a regular interval, or when a 
change is made on the master. This is unnecessarily labor intensive. 

In order to escape from the idiosyncrasies of any particular implementation, all 
maps should be uniformly timestamped. 

The way a map is transferred from one server to another is not specified by the 
yP protocol. One possibility would be for the system administrator to do it 
manually. Another would be for the yP database server to activate another pro­
cess to perform the map transfer. A third would be for a server to enumerate a 
recent version of the map, using the normal client map enumeration functions. 

The YPPROC _ XFR procedure requests the yP server to update a map, and per­
mits the actual transfer agent (some server process) to call back the requestor 
with a summary status. 

Domains provide a second level for naming within the yP subsystem. They are 
names for sets of maps, therefore create separate map name spaces. Domains 
provide an opportunity to break large organizations up into administerable 
chunks, and the ability to create parallel, non-interfering test and production 
environments. 

Ideally, the domain of interest to a client ought to be associated with the invoking 
user, but in practice it is useful for client machines to be in a default domain. 
Implementations of the yP client interface should supply some mechanism for 
telling processes the domain name they should use. This is needed not only 
because the concept of domain is a useless one as far as most programs are con­
cerned, but, more importantly, so that programs can be written that are insensi­
tive to both location and the invoking user. 

~\Slln ~~ microsystems 
Revision B of 17 February 1981 



2.5. Non-features 

Map Update Within the YP 

Version Commitment Across 
Multiple Requests 

Guaranteed Global 
Consistency 

Access Control 

2.6. YP Database Server 
Protocol Definition 

RPC Constants 

Other Manifest Constants 

Chapter 2 - YP Database Servers 11 

The following capabilities are not included in the current yP protocols: 

All write (and delete) access to the YP's map database is assumed to be outside 
of the yP subsystem. It is probable that write access to the map database will be 
included in later versions of the yP protocols. 

The yP protocol was designed to keep the yP database server stateless with 
regard to its clients. Therefore, there is no facility for contracting with a server to 
preallocate any resource beyond that required to service any single request. In 
particular, there is no way to get a server to commit to use a single version of a 
map while trying to enumerate that map's entries. Use YPPROC_ALL to avoid 
these problems. 

There is no facility for locking maps during the update or propagation phases, 
therefore it is virtually guaranteed that the map database be globally inconsistent 
during those phases. The set of client applications for which the yP is an 
appropriate lookup service is one that (by definition) must be tolerant of transient 
inconsistencies. 

The yP database servers make no attempt to restrict access to the map data by 
any means. All syntactically correct requests are serviced. 

This section describes version 2 of the protocol. It is likely that changes will be 
made to successive versions as the service matures. 

All numbers are in decimal. 

YPPROG 100004 
The yP database server protocol program number. 

YPYERS2 
The current yP protocol version. 

All numbers are in decimal. 

YPMAXRECORD 1024 
The total maximum size of key and value for any pair. The absolute sizes of 
the key and value may divide this maximum arbitrarily. 

YPMAXDOMAIN 64 
The maximum number of characters in a domain name. 

YPMAXMAP64 
The maximum number of characters in a map name. 

YPMAXPEER 64 
The maximum number of characters in a yP host name. 

~\sun '\~ mlcrosystems 
Revision B of 17 February 1986 



12 yP Protocol Spec 

Remote Procedure Return 
Values 

ypstat 

ypxfrstat 

This section presents the return status values returned by several of the yP 

remote procedures. All numbers are in decimal. 

typedef enum { 

YP TRUE = 1, /* General purpose success code. */ 
YP NOMORE = 2, /* No more entries in map. */ 
yP FALSE = 0, /* General purpose failure code.*/ 
YP NOMAP = -1, /* No such map in domain. */ 
YP NODOM = -2, /* Domain not supported. */ 
YP NOKEY = -3, /* No such key in map. */ 
YP BADOP = -4, /* Invalid operation. */ 
YP BADDB = -5, /* Server database is bad. */ 
YP YPERR = -6, /* YP server error. */ -
YP BADARGS = -7, /* Request arguments bad. */ 
YP VERS = -8 /* YP server version mismatch. */ 

} ypstat 

t ypedef enum { 
YPXFR SUCC 1, /* Success */ 
YPXFR AGE 2, /* Master's version not newer */ 
YPXFR NOMAP -1, /* Can't find server for map */ 
YPXFR NOD OM -2, /* Domain not supported */ 
YPXFR RSRC -3, /* Local resouce alloc failure */ 
YPXFR RPC -4, /* RPC failure talking to server *~ 

YPXFR MADDR -5, /* Can't get master address */ 
YPXFR YPERR -6, /* YP server/map db error */ 
YPXFR BADARGS= -7, /* Request arguments bad */ 
YPXFR DBM -8, /* Local database failure */ 
YPXFR FILE -9, /* Local file I/O failure */ 
YPXFR SKEW -10, /* Map version skew in transfer */ 
YPXFR CLEAR -11, /* Can't clear local ypserv */ 
YPXFR FORCE -12, /* Must override defaults */ 
YPXFR XFRERR -13, /* ypxfr error */ 
YPXFR REFUSED= -14 /* ypserv refused transfer */ 

ypxfrstat 

Revision B of 17 February 1986 



Basic Data Structures 

domainname 

mapname 

peer name 

keydat 

valdat 

ypmapyarms 

ypre<L.xfr 

Chapter 2 - yP Database Servers 13 

This section defines the data structures used as inputs to and outputs from the yP 

remote procedures. 

(typedef string domainname<YPMAXDOMAIN> 

( typedef string mapname<YPMAXMAP> 

( typedef string peername<YPMAXPEER> 

( typedef string keydat<YPMAXRECORD> 

( typedef string valdat<YPMAXRECORD> 

typedef struct 
domainname 
mapname 
unsigned long ordernum 
peername 

ypmapyarms 

] 

] 

] 

] 

] 

This contains parameters giving information about map mapname within 
domain domainname; peername is the name of the map's master yP data­
base server. If any of the three strings is null, it indicates information is unk­
nown or unavailable. The ordernum element contains a binary value represent­
ing the value of the map's order number; if unavailable, this is O. 

typedef struct { 
struct ypmapyarms mapyarms 
unsigned long transid 
unsigned long prog 
unsigned short port 

ypre<Lxfr 

Revision B of 17 February 1986 



14 yP Protocol Spec 

ypresp_val 

ypresp_master 

ypresp_order 

ypresp_xfr 

ypmaplist 

typedef struct 
ypstat 
valdat 

ypresp_va1 

typedef struct 
ypstat 
keydat 
valdat 

ypresp_key_val 

typedef struct 
ypstat 
peername 

ypresp_master 

typedef struct { 
ypstat 
unsigned long ordernum 

ypresp_order 

typedef union switch (boolean more) { 
TRUE: 

ypresp_key_val 
FALSE: 

struct { } 
ypresp_all 

typedef struct { 
unsigned long transid 
ypxfrstat xfrstat 

ypresp_xfr 

typedef struct { 
mapname 
ypmaplist * 

ypmaplist 

~\Slln ~ microsystems 
Revision B of 17 February 1986 



ypresp_maplist typedef struct { 
ypstat 
ypmaplist * 

ypresp_maplist 

41\ sun 
~ microsystems 

Chapter 2 - yP Database Servers 15 

Revision B of 17 February 1986 



16 yP Protocol Spec 

YP Database Server Remote 
Procedures 

Do Nothing 

Do You Serve This Domain? 

Answer Only If You Serve This 
Domain 

Return Value of a Key 

This section contains a specification for each function that can be called as a 
remote procedure. The input and output parameters are described using the XDR 
data definition language. 

Procedure 0, Version 2. 

( O. YPPROC_NULL ( ) returns ( I ] 
This takes no arguments, does no work, and returns nothing. It is made available 
in all RPC services to allow server response testing and timing. 

Procedure 1, Version 2. 

1. YPPROC DOMAIN (domain) returns (serves) 
domainname domain; 
boolean serves; 

This returns TRUE if the server serves domain, and FALSE otherwise. This 
procedure allows a potential client to detennine if a given server supports a cer­
tain domain. 

Procedure 2, Version 2. 

2. YPPROC_DOMAIN_NONACK (domain) returns (serves) 
domainname domain; 
boolean serves; 

This procedure returns TRUE if the server serves domain; otherwise it does not 
retum The intent of the function is that it be called in a broadcast environment, 
in which it is useful to restrict the number of useless messages. If this function is 
called, the client interface implementation must be written so as to regain control 
in the negative case, for instance by means of a timeout on the response. 

Sun's current implementation currently does return in the FALSE case by 
forcing an RPC decode error. 

Procedure 3, Version 2. 

3. YPPROC_MATCH (req) returns (resp) 
ypre'L key req; 
ypresp_val resp; 

This returns the value associated with the datum keydat in req. If the 
stat us element in resp has the value YP _TRUE, the value data are returned 
in the datum valdat. 

~\Slln ~~ microsystems 
Revision B of 17 February 1986 



Get First Key-Value Pair in 
Map 

Get Next Key-Value Pair in 
Map 

Transfer Map 

Reinitialize Internal State 

Chapter 2 - yP Database Servers 17 

Procedure 4, Version 2. 

4. YPPROC_FIRST (req) returns (resp) 
ypreCLkey reqi 
ypresp_key_val respi 

If status has the value YP_TRUE, this returns the first key-value pair from the 
map named in req to the keydat and valdat elements within resp. When 
status contains the value YP_NOMORE, the map is empty. 

Procedure 5, Version 2. 

5. YPPROC_NEXT (req) returns (resp) 
ypreCLkey reqi 
ypresp_key_val respi 

If status has the value YP_TRUE, this returns the key-value pair following the 
key-value named req to the keydat and valdat elements within resp. If 
the passed key is the last key in the map, the value of status is YP _NOMORE. 

Procedure 6, Version 2. 

6. YPPROC_XFR (req) returns (resp) 
ypreCLxfr req; 
ypresp_xfr respi 

The action taken in response to this request is unspecified, and is implementation 
dependent. The intention is to indicate to the server that a map should be 
updated, and to allow the actual transfer agent (whether it be the yP server pro­
cess, or some other process) to call back the requestor with a summary status. 

The transfer agent should call back the program running on the requesting host 
with program number req .prog, program version 1, and listening at port 
req. port. The procedure number is 1, and the callback data is of type 
ypresp _ xfr. The transid field should tum around req. transid, and 
the xfrstat field should be set appropriately. 

Procedure 7, Version 2. 

( 7. YPPROC_CLEAR ( ) returns ( ) ] 
The action taken in response to this request is unspecified, and is implementation 
dependent. Different server implementations may have different amounts of 
internal state (open files, or the current map, for example). This request signals 
that all such state should be expunged. 

Revision B of 17 February 1986 



18 yP Protocol Spec 

Get All Key-Value Pairs in Map Procedure 8, Version 2. 

Get Map Master N arne 

Get Map Order Number 

Get All Maps in Domain 

8. YPPROC_ALL (req) returns (resp) 
ypre~nokey req; 
ypresp_all resp; 

This allows all key-value pairs from a map to be transferred with a single RPC 
request When the union's discriminant is FALSE, no more key-value pairs will 
be returned. The status field of the last rpresp_key_ val structure should be 
consulted to determine why the flow of returned key-value pairs has stopped. 

Procedure 9, Version 2. 

9. YPPROC MASTER (req) returns (resp) 
ypre~nokey req; 
ypresp_master resp; 

This returnes the map's master yP server inside the resp structure. 

Procedure 10, Version 2. 

10. YPPROC_ORDER (req) returns (resp) 
ypre~nokey req; 
ypresp_order resp; 

This returns a map's order number as an unsigned long integer, which indicates 
when the map was built. This quantity represents the number of seconds since 
the midnight before 1 January 1970 GMT. 

Procedure 11, Version 2. 

11. YPPROC MAPLIST (req) returns (resp) 
domainname req; 
ypresp_maplist resp; 

This returns a list of all the maps in a domain. 

~\sun ,~ microsystems 
Revision B of 17 February 1986 



3 
yP Binders 

yp Binders ......................................................................................................................................... 21 

3.1. Introduction ......................................................................................................................... 21 

3.2. yP Bincler Protocol Definition ................................................................................. 21 

RPC Constants ................................................................................................................ 22 

OIDer Manifest Constants ......................................................................................... 22 

ypbind_resptype ........................................................................................ 22 

ypbinderr ............................................................................................................ 22 

Basic Data Structures ................................................................................................. 22 

domainname ......................................................................................................... 22 

ypbind_binding ........................................................................................... 22 

ypbind_resp ..................................................................................................... 23 

ypbind_setdom ............................................................................................... 23 

yP Binder Remote Procedures ............................................................................. 23 

Do Nothing .................................................................................................................. 23 

Get Current Binding for a Domain ................................................................ 23 

Set Domain Binding .............................................................................................. 24 





J.1. Introduction 

3.2. YP Binder Protocol 
Definition 

3 
YP Binders 

In order that any network service be usable, there must be some way for potential 
clients to find the servers. This section describes the yP binder, an optional ele­
ment in the yP subsystem that supplies yP database server addressing informa­
tion to potential yP clients. 

In order to address a yP server in the Internet environment, a client must know 
the server's internet address, and the port at which the server is listening for ser­
vice requests. No contract is negotiated between a yP server and a potential 
client, therefore the addressing information is sufficient to bind the client to the 
server. 

Of the many possible ways for a client to get the addressing information, one 
alternative is to supply an entity to cache the bindings, and to serve that binding 
database to potential yP clients. The theory is that if finding the service takes a 
lot of work, allocate a specialist to do it, rather than burden every client with a 
job that is irrelevant to its real function. A yP binder only makes sense if it is 
easier for a client to find the yP binder than to find a yP database server, and if 
the yP binder can itself find a yP database server. 

We make the assumption that a yP binder is present at every network node, and 
because of this, addressing the yP binder is easier than addressing a yP database 
server. The scheme for finding a local resource is implementation-specific, but 
given that a resource is guaranteed to be local, there may be some efficient way 
of finding it. We further assume that the yP binder can find a yP database server 
somehow, but that the way is either complicated, time-consuming, or resource­
consuming. If either of these assumptions is untrue, then probably your imple­
mentation is not a good bet for a yP binder. 

If a yP binder is implemented, it can provide added value beyond the binding: it 
can verify that the binding is correct and that the yP database server is alive and 
well, for instance. The degree of sureness in a binding that the yP binder gives 
to a client is a parameter that can be tuned appropriately in the implementation. 

This section describes version 2 of the protocol. It is likely that changes will be 
made to successive versions as the service matures. 

21 Revision B of 17 February 1986 



22 yP Protocol Spec 

RPC Constants 

Other Manifest Constants 

ypbind_resptype 

ypbinderr 

Basic Data Structures 

domainname 

ypbind_binding 

All numbers are decimal. 

YPBINDPROG 100007 
The yP binder protocol program number. 

YPBINDVERS 2 
The current yP binder protocol version. 

All numbers are decimal. 

YPMAXOOMAIN 64 
The maximum number of characters in a domain name. This is identical to 
the constant defined above within the yP database server protocol section. 

enum ypbind_resptype { 
YPBIND_SUCC_VAL 1, 
YPBIND FAIL VAL = 2 - -

This discriminates between success responses and failure responses to a 
YPBINDPROC_DOMAIN request. 

typedef enum { 
YPBIND ERR ERR 1 /* Internal error */ 
YPBIND_ERR_NOSERV 2 /* No bound server for domain */ 
YPBIND ERR RESC 3 /* Can't allocate system resource * 

ypbinderr 

The error case of most interest to a YP binder client is YPB IND _ERR NOSERV; 
it means that the binding request cannot be satisfied because the yP binder 
doesn't know how to address any yP database server in the named domain. 

This section defines the data structures used as inputs to and outputs from the yP 

binder remote procedures. 

(~t_yp __ e_d_e_f __ s_t_r_1_'n_g __ d_O_m_a_i_n_n_a_m_e_<_y_p_MA __ XD __ O_MA __ I_N_> _____________________ J 

This is identical to the domainname string defined above within the yP database 
server protocol section. 

typedef struct { 
unsigned long ypbind_binding_addr 
unsigned short ypbind_binding-port 

ypbind_binding 

This contains the information necessary to bind a client to a yP database server 
in the Internet environment: ypbind _ binding_ addr holds the host IP 

.\sun ,~ microsystems 
Revision B of 17 February 1986 



ypbind_setdom 

YP Binder Remote 
Procedures 

Do Nothing 

Get Current Binding for a 
Domain 

Chapter 3 - yP Binders 23 

address (4 bytes), and ypbind _ bindingyort holds the port address (2 
bytes). Both IP address and port address must be in ARPA network byte order 
(most significant byte first, or big endian), regardless of the host machine's native 
architecture. 

typedef struct { 
union switch (enum ypbind_resptype status) { 

YPBIND SUCC VAL: - -
ypbind_binding 

YPBIND FAIL VAL: 
ypbinderr 

default: 
{ } 

ypbind_resp 

This is the response to a YPBINDPROC _DOMAIN request. 

typedef struct { 
domainname 
ypbind_binding 
version 

ypbind_setdom 

This is the input data structure for the YPBINDPROC _ SETDOM procedure. 

Like the yP procedures earlier, these procedures are described using the XDR 
data definition language. 

Procedure 0, Version 2. 

( o. YPBINDPROC_NULL ( ) returns ( ) 

This does no work. It is made available in all RPC services to allow server 
response testing and timing. 

Procedure 1, Version 2. 

1. YPBINDPROC DOMAIN (domain) returns (resp) 
domainname domain; 
ypbind_resp resp; 

This returns the binding information necessary to address a yP database server 
within the Internet environment. 

] 

Revision B of 17 February 1986 



24 yP Protocol Spec 

Set Domain Binding Procedure 2, Version 2. 

2. YPBINDPROC SETDOM (setdom) returns ( ) 
ypbind_setdom setdom; 

This instructs a yP binder to use the passed information as its current binding 
infonnation for the passed domain . 

• sun 
~ microsystems 

Revision B of 17 February 198t 



[ndex 

A 
\.RP A network byte order, 23 

B 
)oolean,5 
>yte order, 23 

D 
iiscriminated union, 4 
iomain, 3, 16 
:iomainname, 13, 22 

E 
::numeration, 3 

F 
~ALSE.5.16 

G 
global consistency, 3 

K 
keydat, 13,16, 17 

M 
map, 3 
map enumeration, 9 
map propagation, 10 
map retrieval, 9 
map update, 10 
mapname,13 
master, 10 
match, 3, 9 

N 
network byte order, 23 

o 
ordernum, 13 

p 
peername, 13 
propagation, 3 

-25-

R 
req, 16, 17 
req. port, 17 
req. prog, 17 
req.transid, 17 
resp, 16, 17,18 
return, 16 
RPC remote procedure call, 4 
rpresp_key_val,18 

s 
slave, 10 
status, 16, 17 

T 
timestamps, 10 
transid, 17 
TRUE, 5,16 

u 
update, 3 

V 
valdat, 13, 16, 17 

X 
XDR data description language, 4 
xfrstat,17 

y 
yP binder detailed error codes, 22 
yP server return status values, 12 
YP _ NOMORE, 17 
YP_TRUE, 16, 17 
ypbind_bindin~22 
ypbind_binding_add~22 

ypbind_binding-POrt,23 
YPBIND_ERR_NOSERV,22 
ypbind_resp,23 
ypbind_resptype,22 
ypbind _ setdom, 23 
ypbinderr, 22 
YPBINDPROC_DOMAIN,22,23 
YPBINDPROC _NULL, 23 



Index Continued 

YPBINDPROC _ SETDOM, 23,.24 
YPBINDPROG, 22 
YPBINDVERS,22 
ypmap _parms, 13 
ypmaplist, 14 
YPMAXDOMAIN, 5, 11, 22 
YPMAXMAP, 11 
YPMAXPEER, 11 
YPMAXRECORD, 11 
YPPROC_ALL,9, 11, 18 
YPPROC_CLEAR, 17 
YPPROC_DOMAI~16 

YPPROC_DOMAIN_NONAC~16 

YPPROC_FIRST,9,17 
YPPROC_MAPLIST,18 
YPPROC_MASTER, 18 
YPPROC _MATCH, 9, 16 
YPPROC_NEXT,9,17 
YPPROC_NULL, 16 
YPPROC _ORDER, 18 
YPPROC _ XFR, 10, 17 
YPPROG,11 
ypre~xfr, 13 
ypresp_all,14 
ypresp_key_val,14 
ypresp_maplist,15 
ypresp_master,14 
ypresp_order,14 
ypresp_val,14 
ypresp_xfr, 14, 17 
ypstat,12 
YPVERS,11 
ypxfrstat,12 

-26-



Inter-Process Comtnunication 
Primer 





Contents 

Chapter 1 Introduction .......................................................................................................... 3 

Chapter 2 Basics ........................................................................................................................ 7 

2.1. Socket Types ...................................................................................................................... 7 

2.2. Socket Creation ................................................................................................................. 8 

2.3. Binding Names ................................................................................................................. 9 

2.4. Connection Establishment .......................................................................................... 10 

2.5. Data Transfer ...................................................................................................................... 11 

2.6. Discarding Sockets ......................................................................................................... 12 

2.7. Connectionless Sockets ................................................................................................ 13 

2.8. Input/Output Multiplexing ......................................................................................... 13 

Chapter 3 Network Library Routines ........................................................................ 17 

3.1. Host Names ......................................................................................................................... 18 

3.2. Network Names ................................................................................................................ 19 

3.3. Protocol Names ................................................................................................................. 20 

3.4. Service Names ................................................................................................................... 20 

3.5. Miscellaneous .................................................................................................................... 21 

Chapter 4 Client/Server Model ...................................................................................... 25 

4.1. Servers ................................................................................................................................... 26 

4.2. Clients .................................................................................................................................... 27 

4.3. Connectionless Servers ................................................................................................ 28 

Chapter 5 Advanced Topics ............................................................................................. 35 

-i-



Contents Continued 

5.1. Out-of-Band Data ............................................................................................................ 35 

5.2. Signals and Process Groups ....................................................................................... 37 

5.3. Pseudo TeIlllinals ............................................................................................................ 37 

5.4. Internet Address Binding ............................................................................................ 38 

5.5. Broadcasting and Datagram Sockets .................................................................... 40 

5.6. Signals .................................................................................................................................... 41 

5.7. Discarding Sockets Quickly ...................................................................................... 42 

-ii-



1 
Introduction 

Introduction ....................................................................................................................................... 3 





1 
Introduction 

This document provides an introduction to the inter-process communication 
(IPC) facilities on Sun's version of the UNIXt operating system. It discusses the 
overall model for IPC, and introduces IPC primitives that have been added to the 
system. The majority of the document considers the use of these primitives in 
developing applications. The reader is expected to be familiar with the C pro­
gramming language, as all examples are written in C. 

One of the most important features added in the Berkeley 4.2 release of the UNIX 
operating system is substantial new IPC facilities. These facilities are the result 
of more than two years of discussion and research. The facilities provided in this 
release incorporate many of the ideas from current research, while trying to 
maintain simplicity and conciseness. These IPC facilities have already esta­
blished a de/acto standard. 

UNIX has previously been weak in doing IPC. Until recently, the only standard 
mechanism that allowed two processes to communicate were pipes (the mpx files 
in Version 7 were experimental). Unfortunately, pipes are restrictive in that two 
communicating processes must be related through a common ancestor. Further, 
the semantics of pipes makes them impossible to maintain in a distributed 
environment. 

Earlier attempts at extending the IPC facilities of UNIX have met with mixed 
reaction. The majority of problems have been related to these facilities being 
tied to the UNIX filesystem, either through naming or implementation. Conse­
quently, the IPC facilities provided in this release have been designed as a totally 
independent subsystem, and allow processes to rendezvous in many ways. 
Processes may rendezvous through a UNIX filesystem-like name space (a space 
where all names are path names) as well as through a network name space. In 
fact, new name spaces may be added at a future time with only minor changes 
visible to users. Furthermore, the communication facilities have been extended 
to include more than the simple byte stream provided by pipes. These extensions 
have resulted in a completely new part of the system, which users will need time 
to familiarize themselves with. It is likely that as more use is made of these 
facilities, they will be refined; only time will tell. 

t UNIX is a trademark of AT&T Bell Laboratories. 

3 Revision B of 17 February 1986 



4 IPC Primer 

The remainder of this document is organized in four sections. Section 2 intro­
duces new system calls and the basic model of communication. Section 3 
describes some of the supporting library routines users may find useful in con­
structing distributed applications. Section 4 is concerned with the client/server 

. model used in developing applications; it includes examples of the two major 
types of servers. Section 5 delves into advanced topics that sophisticated users 
may need to know when using IPC facilities. 

The System I nterface Manual contains a short explanation of IPC facilities, plus 
manual pages for all the system calls and library routines involved. 

~\sun ,~ microsystems 
Revision B of 17 February 198t: 



2 
Basics 

Basics ..................................................................................................................................................... 7 

2.1. Socket Types ...................................................................................................................... 7 

2.2. Socket Creation ................................................................................................................. 8 

2.3. Binding Names ................................................................................................................. 9 

2.4. Connection Establishment .......................................................................................... 10 

2.5. Data Transfer ...................................................................................................................... 11 

2.6. Discarding Sockets ......................................................................................................... 12 

2.7. Connectionless Sockets ................................................................................................ 13 

2.8. Input/Output Multiplexing ......................................................................................... 13 





2.1. Socket Types 

2 
Basics 

The basic building block for communication is the socket. A socket is an end­
point of communication to which a name may be bound. Each socket in use has 
a type and one or more associated processes. Sockets exist within communica­
tion domains. A communication domain is an abstraction introduced to bundle 
common properties of processes communicating through sockets. One such pro­
perty is the scheme used to name sockets. For example, in the UNIX communi­
cation domain sockets are named with UNIX path names; e.g. a socket may be 
named / dev / foo. Sockets normally exchange data only with sockets in the 
same domain (it may be possible to cross domain boundaries, but only if some 
translation process is performed). The IPC supports two separate communication 
domains: the UNIX domain, and the Internet domain is used by processes which 
communicate using the the DARPA standard communication protocols. The 
underlying communication facilities provided by these domains have a 
significant influence on the internal system implementation as well as the inter­
face to socket facilities available to a user. An example of the latter is that a 
socket operating in the UNIX domain sees a subset of the possible error condi­
tions that are possible when operating in the Internet domain. 

Sockets are typed according to the communication properties visible to a user. 
Processes are presumed to communicate only between sockets of the same type, 
although there is nothing that prevents communication between sockets of dif­
ferent types should the underlying communication protocols support this. 

Three types of sockets are currently available to a user. A stream socket pro­
vides for the bidirectional, reliable, sequenced, and unduplicated flow of data 
without record boundaries. Aside from the bidirectionality of data flow, a pair of 
connected stream sockets provides an interface nearly identical to that of pipes.1 

A datagram socket supports bidirectional flow of data that is not promised to be 
sequenced, reliable, or unduplicated. That is, a process receiving messages on a 
datagram socket may find duplicate messages, and possibly in an order different 
from the order in which it was sent. An important characteristic of a datagram 
socket is that record boundaries in data are preserved. Datagram sockets closely 
model the facilities found in many contemporary packet switched networks such 

1 In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been 
implemented internally as simply a pair of connected stream sockets. 

~\sun ,~ microsystems 
7 Revision B of 17 February 1986 



8 IPC Primer 

2.2. Socket Creation 

as the Ethernet. 

A raw socket provides access to underlying communication protocols that sup­
port socket abstractions. These sockets are nonnally datagram oriented, though 
their exact characteristics depend on the interface provided by the protocol. Raw 
sockets are not intended for the general user; they have been provided mainly for 
those interested in developing new communication protocols, who must gain 
access to the more esoteric facilities of an existing protocol. 

Two interesting, but unimplemented, socket types are the sequenced packet 
socket and the reliably delivered message socket. The first is identical to a 
stream socket, except that record boundaries are preserved; it is similar to the 
Xerox NS Sequenced Packet protocol. The second has similar properties to a 
datagram socket, but with reliable delivery. This document discusses only 
implemented sockets. 

To create a socket, use the socket (2) system call: 

( s = socket(domain, type, protocol); J 
This call requests that the system create a socket in the specified domain and of 
the specified type. A particular protocol may also be requested. If the protocol 
is left unspecified (a value of 0), the system will select an appropriate protocol 
from those protocols which comprise the communication domain and which may 
be used to support the requested socket type. A socket is like a file descriptor. 
The user is returned a descriptor (a small integer) which may be used in later sys­
tem calls which operate on sockets. The domain is specified as one of the mani­
fest constants defined in the file <sys/ socket. h>. For the UNIX domain the 
constant is AF _ UNIX;2 for the Internet domain AF _ INET. The socket types are 
also defined in this file and one of SOCK_STREAM, SOCK_DGRAM, or 
SOCK_RAW must be specified. To create a stream socket in the Internet domain, 
the following call might be used: 

(s = socket(AF_INET, SOCK_STREAM, 0); 

This call results in a stream socket being created with the TCP protocol provid­
ing the underlying communication support. The TCP protocol requires 
SOCK_STREAM, while the UDP protocol requires SOCK_DGRAM. To create a 
datagram socket for on-machine use, a sample call might be: 

(s = socket(AF_UNIX, SOCK_DGRAM, 0); 

J 

J 
To obtain a particular protocol one selects the protocol number, as defined within 
the communication domain. For the Internet domain the available protocols are 
defined in <netinet/ in. h> or, better yet, one may use one of the library 

2 The manifest constants are named AF _whatever as they indicate the address format to use in interpreting 
names. 

Revision B of 17 February 1986 



2.3. Binding Names 

Chapter 2 - Basics 9 

routines discussed in section 3, such as getprotobyname (3N): 

iinclude <sys/types.h> 
iinclude <sys/socket.h> 
iinclude <netinet/in.h> 
iinclude <netdb.h> 

pp = getprotobyname("tcp"); 
s = socket{AF_INET, SOCK_STREAM, pp->p-proto); 

There are several reasons a socket call may fail. Aside from the rare occurrence 
of lack of memory (ENOBUFS), a socket request may fail due to a request for an 
unknown protocol (EPROTONOSUPPORT), or a request for a type of socket for 
which there is no supporting protocol (EPROTOTYPE). 

A socket is created without a name. Until a name is bound to a socket, processes 
have no way to reference it and, consequently, no messages may be received on 
it The bind () call is used to assign a name to a socket: 

(~b_~_'n_d __ {S __ ,_n_a_m_e __ , __ n_am __ e_l_e_n_)_; __________________________________ ~] 
The bound name is a variable length byte string which is interpreted by the sup­
porting protocol(s). Its interpretation may vary from communication domain to 
communication domain (this is one of the properties which comprise the 
domain). In the UNIX domain names are path names while in the Internet 
domain names contain an Internet address and port number. If one wanted to 
bind the name / dev / f 00 to a UNIX domain socket, the following would be 
used: 

iinclude <sys/un.h> 
struct sockaddr_un sun; 
sun. sun_family = AF_UNIX; 
strcpy{sun.sun-path, "/dev/foo"); 
bind{s, &sun, strlen ("/dev/foo") +2) ; /* 2 bytes, family */ 

In binding an Internet address things become more complicated. The actual call 
is simple, 

iinclude <sys/types.h> 
iinclude <netinet/in.h> 

struct sockaddr_in sin; 

bind{s, &sin, sizeof(sin»; 

but the selection of what to place in the address s in requires some discussion. 
We will come back to the problem offonnulating Internet addresses in section 3 
when the library routines used in name resolution are discussed. 

Revision B of 17 February 19&6 



10 IPC Primer 

2.4. Connection 
Establishment 

With a bound socket it is possible to rendezvous with an unrelated process. This 
operation is usually asymmetric with one process a client and the other a server. 
The client requests services from the server by initiating a connection to the 
server's socket. The server, when willing to offer its advertised services, pas­
sively listens on its socket. On the client side the connect () call is used to 
initiate a connection. Using the UNIX domain, this might appear as, 

struct sockaddr_un server; 
connect(s, &server, strlen(server.sun-path)+2)i 

while in the Internet domain, 

struct sockaddr_in server; 
connect(s, &server, sizeof(server»; 

If the client process's socket is unbound at the time of the connect call, the sys­
tem will automatically select and bind a name to the socket; c.f. section 5.4.3 An 
error is returned when the connection was unsuccessful (any name automatically 
bound by the system, however, remains). Otherwise, the socket is associated 
with the server and data transfer may begin. 

Many errors can be returned when a connection attempt fails. The most common 
are: 

ETIMEDOUT 
After failing to establish a connection for a period of time, the system 
decided there was no point in retrying the connection attempt any more. 
This usually occurs because the destination host is down, or because prob­
lems in the network resulted in transmissions being lost. 

ECONNREFUSED 
The host refused service for some reason. This is usually due to a server 
process not being present at the requested name. 

ENETDOWNorEHOSTDOWN 
These operational errors are returned based on status information delivered 
to the client host by the underlying communication services. 

ENETUNREACHorEHOSTUNREACH 
These operational errors can occur either because the network or host is unk­
nown (no route to the network or host is present), or because of status infor­
mation returned by intermediate gateways or switching nodes. Many times 
the status returned is not sufficient to distinguish a network being down from 
a host being down. In these cases the system is conservative and indicates 
the entire network is unreachable. 

For the server to receive a client's connection, it must perform two steps after 
binding its socket: listen () and accept (). Note, however, that it isn't 
necessary to perform either step with UDP sockets. The first is to indicate a 

3 You must do a getsocknaTM (2) call to retrieve the binding. 

Revision B of 17 February 1986 



2.5. Data Transfer 

Chapter 2 - Basics 11 

willingness to listen for incoming connection requests: 

[~1_1_'s_t_e_n __ (S_' __ 5 __ )_; ____________________________________________ ~] 
The last parameter to the listen () call specifies the maximum number of out­
standing connections which may be queued awaiting acceptance by the server 
process. Should a connection be requested while the queue is full, the connection 
will not be refused, but rather, individual messages comprising the request will 
be ignored. This gives a harried server time to make room in its pending connec­
tion queue while the client retries the connection request. Had the connection 
been returned with the ECONNREFUSED error, the client would be unable to tell 
if the server was up or not. As it is now it is still possible to get the ETlMEDOUT 
error back, though this is unlikely. The backlog figure supplied with the listen 
call is limited by the system to a maximum of 5 pending connections on anyone 
queue. This avoids the problem of processes hogging system resources by set­
ting an infinite backlog, then ignoring all connection requests. 

Second, with a socket marked as listening, a server may accept () a connec­
tion: 

fromlen = sizeof(from); 
snew = accept(s, &from, &fromlen); 

A new descriptor is returned on receipt of a connection (along with a new 
socket). If the server wishes to find out who its client is, it may supply a buffer 
for the client socket's name. The value-result parameter fromlen is initialized 
by the server to indicate how much space is associated with from, then modified 
on return to reflect the true size of the name. If the client's name is not of 
interest, the second parameter may be zero. 

The ac cept () call normally blocks. That is, the call to accept will not return 
until a connection is available or the system call is interrupted by a signal to the 
process. Further, there is no way for a process to indicate it will accept connec­
tions from only a specific individual, or individuals. It is up to the user process 
to consider who the connection is from and close down the connection if it does 
not wish to speak to the process. If the server process wants to accept connec­
tions on more than one socket, or not block on the accept call there are alterna­
tives; they will be considered in section 5. 

With a connection established, data may begin to flow. To send and receive data 
there are a number of possible calls. With the peer entity at each end of a con­
nection anchored, a user can send or receive a message without specifying the 
peer. As one might expect, in this case, then the normal read () and write () 
system calls are useable, 

char buf[BUFSIZ]; 

write(s, buf, sizeof(buf»; 
read(s, buf, sizeof(buf»; 

Revision B of 17 February 1986 



12 IPC Primer 

2.6. Discarding Sockets 

In addition to read () and write () , the new calls send () and recv () may 
be used: 

send(s, buf, sizeof(buf), flags); 
reeves, buf, sizeof(buf), flags); 

While send () and recv () are virtually identical to read () and write () , 
the extra flags argument is important. The flags may be specified as a non­
zero value if one or more of the following is required: 

MSG OOB 
MSG PEEK 
MSG DONTROUTE 

send/receive out-of-band data 
look at data without reading 
send data without routing packets 

Out-of-band data is a notion specific to stream sockets, and one which we will 
not immediately consider. The option to have data sent without routing applied 
to the outgoing packets is currently used only by the routing table management 
process, and is unlikely to be of interest to the casual user. The ability to previeVt 
data is, however, of interest When MS G _ PEEK is specified with a re cv () call, 
any data present is returned to the user, but treated as still unread. That is, the 
next read () or wr i te () call to the socket will return data previously pre­
viewed. 

Once a socket is no longer of interest, it may be discarded by applying a 
c los e () to the descriptor: 

( close (s) ; 

If data is associated with a socket which promises reliable delivery (e.g. a stream 
socket) when a close takes place, the system will continue to attempt to transfer 
the data. However, after a fairly long period of time (about four minutes), if the 
data is still undelivered, it will be discarded. Should a user have no use for any 
pending data, it may perform a shutdown () on the socket prior to closing it 
This call is of the form, 

[ shutdown(s, how); 

where how is 0 if the user is no longer interested in reading data, 1 if no more 
data will be sent, or 2 if no data is to be sent or received. Applying shutdown to 
a socket causes any data queued to be immediately discarded. 

When a client or server machine crashes, the socket stays open on the machine 
that hasn't crashed. Afterwards, writing will result in a SIGPIPE, reading in an 
EOF. 

] 

Revision B of 17 February 198~ 



2.7. Connectionless Sockets 

2.8. Input/Output 
Multiplexing 

Chapter 2 - Basics 13 

To this point we have been concerned mostly with sockets which follow a con­
nection oriented model. There is also support for connectionless interactions typ­
ical of datagram facilities found in contemporary packet switched networks. A 
datagram socket provides a symmetric interface to data exchange. While 
processes are still likely to be client and server, there is no requirement for con­
nection establishment. Instead, each message includes the destination address. 

Datagram sockets are created as before, and each should have a name bound to it 
in order that the recipient of a message may identify the sender. To send data, 
the sendto () primitive is used, 

sendto(s, buf, buflen, flags, &to, tolen); 

The s, buf, buflen, and flags parameters are used as before. The to and 
tolen values are used to indicate the intended recipient of the message. When 
using an unreliable datagram interface, it is unlikely any errors will be reported 
to the sender. Where information is present locally to recognize a message 
which may never be delivered (for instance when a network is unreachable), the 
call will return -1 and the global value errno will contain an error number. 

To receive messages on an unconnected datagram socket, the recvfrom primi­
tive is provided: 

recvfrom(s, buf, buflen, flags, &from, &fromlen); 

Once again, the fromlen parameter is handled in a value-result fashion, ini­
tially containing the size of the from buffer. 

In addition to the two calls mentioned above, datagram sockets may also use the 
connect() call to associate a socket with a specific address. In this case, any data 
sent on the socket will automatically be addressed to the connected peer, and 
only data received from that peer will be delivered to the user. Only one con­
nected address is permitted for each socket (no multi-casting). Connect requests 
on datagram sockets return immediately, as this simply results in the system 
recording the peer's address (as compared to a stream socket where a connect 
request initiates establishment of an end to end connection). Other of the less 
important details of datagram sockets are described in section 5. 

One last facility often used in developing applications is the ability to multiplex 
110 requests among multiple sockets and/or files. This is done using the 
select () system call: 

select (nfds, &readfds, &writefds, &execptfds, &timeout); 

The select () call takes as arguments three bit masks, one for the set of file 
descriptors for which the caller wishes to be able to read data on, one for those 
descriptors to which data is to be written, and one for which exceptional condi­
tions are pending. Bit masks are created by or-ing bits of the fonn 1 < < f d. That 
is, a descriptor f d is selected if a 1 is present in the fd'th bit of the mask. The 

Revision B of 17 February 1986 



14 IPC Primer 

parameter nf ds specifies the range of file descriptors (Le. one plus the value of 
the largest descriptor) specified in a mask. 

A timeout value may be specified if the selection is not to last more than a 
predetermined period of time. If timeout is a struct timevalofO 
seconds, 0 microseconds, the selection takes the form of a poll, returning 
immediately. If the last parameter is a null pointer, the selection will block 
indefinitely.4 The select () call normally returns the number of file descrip­
tors selected. If select () returns due to the timeout expiring, then a value of 
-1 is returned along with the error number EINTR. 

Select () provides a synchronous multiplexing scheme. Asynchronous 
notification of output completion, input availability, and exceptional conditions 
is possible through use of the S I G I 0 and S I GURG signals described in section 
5. 

4 To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received 
by the caller, interrupting the system call. 

~~sun ~'f' microsystems 
Revision B of 17 February 198f 



3 
Network Library Routines 

Network Library Routines ..................................................................................................... 17 

3.1. Host Names ......................................................................................................................... 18 

3.2. Network Names ................................................................................................................ 19 

3.3. Protocol Names ................................................................................................................. 20 

3.4. Service Names ................................................................................................................... 20 

3.5. Miscellaneous .................................................................................................................... 21 





3 
Network Library Routines 

The discussion in section 2 indicated the possible need to locate and construct 
network addresses when using the IPC facilities in a distributed environment To 
aid in this task a number of routines have been added to the standard C run-time 
library. In this section we will consider the new routines provided to manipulate 
network addresses. While the Sun system's networking facilities support only 
the DARPA standard Internet protocols, these routines have been designed with 
flexibility in mind. As more communication protocols become available, we 
hope the same user interface will be maintained in accessing network-related 
address data bases. The only difference should be the values returned to the user. 
Since these values are normally supplied the system, users should not need to be 
directly aware of the communication protocol and/or naming conventions in use. 

Locating a service on a remote host requires many levels of mapping before 
client and server may communicate. A service is assigned a name which is 
intended for human consumption; for example, "the login server on host 
monet". This name, and the name of the peer host, must then be translated into 
network addresses that are not necessarily suitable for human consumption. 
Finally, the address must then used in locating a physical location and route to 
the service. The specifics of these three mappings is likely to vary between net­
work architectures. For instance, it is desirable for a network to not require hosts 
be named in such a way that their physical location is known by the client host. 
Instead, underlying services in the network may discover the actual location of 
the host at the time a client host wishes to communicate. This ability to have 
hosts named in a location independent manner may induce overhead in connec­
tion establishment, as a discovery process must take place, but allows a host to be 
physically mobile without requiring it to notify its clientele of its current loca­
tion. 

Standard routines are provided for: mapping host names to network addresses, 
network names to network numbers, protocol names to protocol numbers, and 
service names to port numbers and the appropriate protocol to use in communi­
cating with the server process. The file <netdb . h> must be included when 
using any of these routines. 

17 Revision B of 17 February 1986 



18 IPC Primer 

3.1. Host Names A host name to address mapping is represented by the hostent structure: 

struct hostent { 

} ; 

char 
char 
int 
int 
char 

*h_name; 
**h_aliases; 
h_addrtype; 
h_length; 
*h_addr; 

1* official name of host *1 
1* alias list *1 
1* host address type *1 
1* length of address *1 
1* address *1 

Note that the h _ addr field in the structure definition is defined as a pointer to a 
ehar. In the case of Internet addresses (the only case implemeted to date) you 
should cast this to a struct in_addr * when using the item. 

The official name of the host and its public aliases are returned, along with a 
variable length address and address type. The routine gethostbyname (3N) takes 
a host name and returns a hostent structure, while the routine 
gethostbyaddr(3N) maps host addresses into a hostent structure. It is possible 
for a host to have many addresses, all having the same name. The gethos­
tybyname () call returns the first matching entry in the database file 
fete/hosts; if this is unsuitable, the lower level routine gethostent(3N) may 
be used. For example, to obtain a hostent structure for a host on a particular 
network the following routine might be used (for simplicity, only Internet 
addresses are considered): 

Revision B of 17 February 1986 



3.2. Network Names 

Chapter 3 - Network library Routines 19 

tinclude <sys/types.h> 
tinclude <sys/socket.h> 
finclude <netinet/in.h> 
finclude <netdb.h> 

struct hostent * 
gethostbynameandnet(name, net) 

char *name; 
int net; 

register struct hostent *hp; 
register char **cp; 

sethostent(O); 
while «hp = gethostent(» != NULL) 

if (hp->h_addrtype != AF_INET) 
continue; 

if (strcmp(name, hp->h_name» { 
for (cp = hp->h_aliases; cp && *cp; cp++) 

if (strcmp(name, *cp) == 0) 
goto found; 

continue; 

found: 
if (in_netof(*(struct in addr *)hp->h_addr»== net) 

break; 

endhostent(O); 
return (hp); 

The standard routine in _ netof(3N) returns the network portion of an Internet 
address. 

As for host names, routines for mapping network names to numbers, and back, 
are provided. These routines return a netent structure: 

/* 
* Assumption here is that a network number 
* fits in 32 bits probably a poor one. 
*/ 

struct netent 
char *n_name; /* official name of net */ 
char **n_aliases; /* alias list */ 
int n_addrtype; /* net address type */ 
int n_net; /* network t */ 

} ; 

The routines getnetbyname (3N), getnetbynumber (3N), and getnetent (3N) are 
the network counterparts to the host routines described above . 

• \sun ~~ microsystems 
Revision B of 17 February 1986 



20 IPC Primer 

3.3. Protocol Names 

3.4. Service Names 

For protocols the protoent structure defines the protocol-name mapping used 
with the routines getprotobyname (3N), getprotobynumber (3N), and 
getprotoent (3N): 

struct protoent 
char *p_name; 1* official protocol name *1 
char **p_aliases; 1* alias list *1 
int p-proto; 1* protocol * *1 

} ; 

Information regarding services is a bit more complicated. A service is expected 
to reside at a specific port and employ a particular communication protocol. 
This view is consistent with the Internet domain, but inconsistent with other net­
work architectures. Further, a service may reside on multiple ports or support 
multiple protocols. If either of these occurs, the higher level library routines will 
have to be bypassed in favor of homegrown routines similar in spirit to the 
gethostbynameandnet routine described above. Note: Internet port 
numbers below 1024 are reserved for server processes running as root. A service 
mapping is described by the servent structure: 

struct servent { 
char *s_name; 1* official service name *1 
char **s_aliases; 1* alias list *1 
int s-port; 1* port * *1 
char *s-proto; 1* protocol to use */ 

} ; 

The routine getservbyname (3N) maps service names to a servent structure by 
specifying a service name and, optionally, a qualifying protocol. Thus the call 

sp = getservbyname(fltelnet fl , (char *)0); 

returns the service specification for a telnet server using any protocol, while 

sp = getservbyname(fltelnet", fltcpfl); 

returns only that telnet server which uses the TCP protocol. The routines 
getservbyport(3N) and getservent(3N) are also provided. The get­
servbyport () routine has an interface similar to that provided by get­
servbyname () ; an optional protocol name may be specified to qualify look­
ups. These routines look up services in the / etc/ services file. 

When prototyping new services, it is easiest to hard-code a port number not in 
/ etc/ services, then later install your service there. 

&~\sun 
~ microsystems 

Revision B of 17 February 1986 



3.5. Miscellaneous 

Chapter 3 - Network Library Routines 21 

With the support routines described above, an application program should rarely 
have to deal directly with addresses. This allows services to be developed as 
much as possible in a network independent fashion. It is clear, however, that 
purging all network dependencies is very difficult. So long as the user is required 
to supply network addresses when naming services and sockets there will always 
some network dependency in a program. For example, the normal code included 
in client programs, such as the remote login program, is of the form shown 
below: 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdio.h> 
#include <netdb.h> 

main (argc, argv) 
char *argv[]; 

struct sockaddr in sin; 
struct servent *sp; 
struct hostent *hp; 
int s; 

if «sp = getservbyname(lflogin", Iftcplf» == NULL) 
fprintf (stderr, 

"rlogin: tcp/login: not a service\n lf ); 
exit(l); 

if «hp = gethostbyname(argv[l]» == NULL) { 
fprintf(stderr, 

"rlogin: %s: unknown host\n lf , argv[l]); 
exit(2); 

/* only filling in part 
*/ 

bzero«char *)&sin, sizeof(sin»; 
bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length); 
sin.sin_family = hp->h_addrtype; 
sin.sin-port = sp->s-port ; 
if «s = socket(AF_INET, SOCK_STREAM, 0» < 0) { 

perror(lfrlogin: socketlf); 
exit(3); 

if (connect(s, (char *)&sin, sizeof(sin» < 0) { 
perror(lfrlogin: connect"); 
exit(S); 

This example will be considered in more detail in section 4. 

~~sun ~~ microsystems 
Revision B of 17 February 1986 



22 IPC Primer 

If we wanted to make the remote login program independent of the Internet pro­
tocols and addressing scheme, we would be forced to add a layer of routines 
which masked the network dependent aspects from the mainstream login code. 
For the current facilities available in the system this does not appear to be 
worthwhile. Perhaps when the system is adapted to different network architec­
tures the utilities will be reorganized more cleanly. 

Aside from the address-related data base routines, there are several other routines 
available in the run-time library which are of interest to users. These are 
intended mostly to simplify manipulation of names and addresses. The follow­
ing table summarizes the routines for manipulating variable length. byte strings 
and handling byte swapping of network addresses and values. 

Call 

bcmp(sl,s2,n) 
bcopy(sl,s2,n) 
bzero(base,n) 
htonl (val) 
htons (val) 
ntohl (val) 
ntohs (val) 

C Run-Time Routines 

Synopsis 

compare byte-strings; 0 if same, not 0 otherwise 
copy n bytes from s 1 to s2 
zero-fill n bytes starting at base 
convert 32-bit quantity from host to network byte order 
convert 16-bit quantity from host to network byte order 
convert 32-bit quantity from network to host byte order 
convert 16-bit quantity from network to host byte order 

The byte swapping routines are provided because the operating system expects 
addresses to be supplied in network order. On a VAX, or machine with similar 
architecture, this is usually reversed. Consequently, programs are sometimes 
required to byte swap quantities. The library routines which return network 
addresses provide them in network order so that they may simply be copied into 
the structures provided to the system. This implies users should encounter the 
byte swapping problem only when interpreting network addresses. For example, 
if an Internet port is to be printed out the following code would be required: 

printf("port number %d\n", ntohs(sp->syort»; 

On machines other than the V AX these routines are defined as null macros. 

Revision B of 17 February 1986 



4 
Client/Server Model 

Client/Server Model ................................................................................................................... 25 

4.1. Servers ................................................................................................................................... 26 

4.2. Clients .................................................................................................................................... 27 

4.3. Connectionless Servers ................................................................................................ 28 





4 
Client/Server Model 

The most commonly used paradigm in constructing distributed applications is the 
client/server model. In this scheme client applications request services from a 
server process. This implies an asymmetry in establishing communication 
between the client and server which has been examined in section 2. In this sec­
tion we win look more closely at the interactions between client and server, and 
consider some of the problems in developing client and server applications. 

Client and server require a well known set of conventions before service may be 
rendered (and accepted). This set of conventions comprises a protocol which 
must be implemented at both ends of a connection. Depending on the situation, 
the protocol may be symmetric or asymmetric. In a symmetric protocol, either 
side may play the master or slave roles. In an asymmetric protocol, one side is 
immutably recognized as the master, with the other the slave. An example of a 
symmetric protocol is the TELNET protocol used in the Internet for remote ter­
minal emulation. An example of an asymmetric protocol is the Internet file 
transfer protocol, FfP. No matter whether the specific protocol used in obtaining 
a service is symmetric or asymmetric, when accessing a service there is a client 
process and a server process. We will first consider the properties of server 
processes, then client processes. 

A server process normally listens at a well know address for service requests. 
Altemati ve schemes which use a service server may be used to eliminate a flock 
of server processes clogging the system while remaining dormant most of the 
time. The Xerox Courier protocol uses the latter scheme. When using Courier, a 
Courier client process contacts a Courier server at the remote host and identifies 
the service it requires. The Courier server process then creates the appropriate 
server process based on a data base and splices the client and server together, 
voiding its part in the transaction. This scheme is attractive in that the Courier 
server process may provide a single contact point for all services, as well as car­
rying out the initial steps in authentication. However, while this is an attractive 
possibility for standardizing access to services, it does introduce a certain amount 
of overhead due to the intermediate process involved. Implementations which 
provide this type of service within the system can minimize the cost of client 
server rendezvous. 

25 Revision B of 17 February 1986 



26 IPC Primer 

4.1. Servers In this release, most servers are accessed at well known Internet addresses or 
UNIX domain names. When a server is started at boot time, it advertises its ser­
vices by listening at a well-known location. For example, the remote login 
server's main loop is of the form shown below: 

'include <stdio.h> 
'include <net/inet.h> 

main (argc, argv) 
int argc; 
char **argv; 

int f; 
struct sockaddr in sin, from; 
struct servent *sp; 

if «sp = getservbyname ("login", "tcp"» == NULL) 
fprintf (stderr, 

"rlogind: tcp/login: not a service\n"); 
exit(l); 

iifndef DEBUG 
«disassociate server from controlling terminal» 

iendif 
sin.sin-port = sp->s-port ; 

f = socket(AF_INET, SOCK_STREAM, 0); 

if (bind(f, (caddr_t) &sin, sizeof (sin» < 0) { 

listen(f, 5); 
for (;;) { 

int g, len = sizeof(from); 

9 = accept(f, &from, &len); 
if (g < 0) { 

if (errno != EINTR) 
perror("rlogind: accept"); 

continue; 

if ( for k () == 0) { 
close(f); 
doit (g, &from); 

close(g); 

/* should never return */ 

The first step taken by the server is look up its service definition: 

~\sun 
~~ microsystems 

Revision B of 17 February 198t 



4.2. Clients 

Chapter 4 - Client/Server Model 27 

if «sp = getservbyname("login", "tcp"» == NULL) { 
fprintf(stderr, "rlogind: tcp/login: not a service\n"); 
exit(l); 

This definition is used in later portions of the code to define the Internet port at 
which it listens for service requests (indicated by a connection). 

Step two is to disassociate the server from the controlling terminal of its invoker. 
This is important as the server will likely not want to receive signals delivered to 
the process group of the controlling terminal. 

Once a server has established a pristine environment, it creates a socket and 
begins accepting service requests. The bind () call is required to insure the 
server listens at its expected location. The main body of the loop is fairly simple: 

for (;;) { 
int g, len = sizeof(from); 

g = accept(f, &from, &len); 
if (g < 0) { 

if (errno != EINTR) 
perror("rlogind: accept"); 

continue; 

if (fork () == 0) { 

close(f); 
doit(g, &from); /* should never return */ 

close(g); 

An accept () call blocks the server until a client requests service. This call 
could return a failure status if the call is interrupted by a signal such as 
SIGCHLD (to be discussed in section 5). Therefore, the return value from 
accept () is checked to insure a connection has actually been established. 
With a connection in hand, the server then forks a child process and invokes the 
main body of the remote login protocol processing. Note how the socket used by 
the parent for queueing connection requests is closed in the child, while the 
socket created as a result of the accept is closed in the parent. The address of the 
client is also handed the do i t () routine because it requires it for authenticating 
clients. The do it () routine communicates using the socket, then closes it and 
exits when done. 

The client side of the remote login service was shown earlier. One can see the 
separate, asymmetric roles of the client and server clearly in the code. The server 
is a passive entity, listening for client connections, while the client process is an 
active entity, initiating a connection when invoked. 

Let us consider more closely the steps taken by the client remote login process. 
As in the server process the first step is to locate the service definition for a 

Revision B of 17 February 1986 



28 IPC Primer 

4.3. Connectionless Servers 

remote login: 

if «sp = getservbyname("login", "tcp"» == NULL) { 
fprintf(stderr,. "rlogin: tcp/login: not a service\n"); 
exit(l); 

Next the destination host is looked up with a gethostbyname () call: 

if «hp = gethostbyname(argv[l]» == NULL) { 
fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]); 
exit(2); 

With this accomplished, all that is required is to establish a connection to the 
server at the requested host and start up the remote login protocol. The address 
buffer is cleared, since only part will be filled in, then filled in with the Internet 
address of the foreign host, and the port number at which the login process 
resides: 

bzero«char *)&sin, sizeof(sin»; 
bcopy(hp->h_addr, (char *)sin.sin_addr, hp->h_length); 
sin.sin_family = hp->h_addrtype; 
sin.sin-port = sp->s-port ; 

A socket is created, and a connection initiated. 

if «s = socket(hp->h_addrtype, SOCK_STREAM, 0» < 0) { 
perror("rlogin: socket"); 
exit(3); 

if (connect(s, (char *)&sin, sizeof(sin» < 0) { 
perror("rlogin: connect"); 
exit(4); 

The details of the remote login protocol will not be considered here. 

While connection-based services are the norm, some services are based on the 
use of datagram sockets. One, in particular, is the rwho service which provides 
users with status information for hosts connected to a local area network. This 
service, while predicated on the ability to broadcast information to all hosts con­
nected to a particular network, is of interest as an example usage of datagram 
sockets. 

A user on any machine running the rwho server may find out the current status 
of a machine with the ruptime (1) program. The output generated is illustrated 
below . 

• \sun 
~ microsystems 

Revision B of 17 February 198, 



Chapter 4 - ClienUServer Model 29 

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31 
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59 
calder up 10:10, 0 users, load 0.27, 0.15, 0.14 
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65 
degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41 
ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56 
ernie down 0:24 
esvax down 17: 04 
ingres down 0:26 
kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11 
matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05 
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50 
merlin down 19+15:3 
mira up 1+07:20, 7 users, load 4.59, 3.28, 2.12 
monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07 
oz down 16:09 
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86 
ucbvax up 9: 34, 2 users, load 6.08, 5.16, 3.28 

Status information for each host is periodically broadcast by rwho server 
processes on each machine. The same server process also receives the status 
information and uses it to update a database. This database is then interpreted to 
generate the status information for each host. Servers operate autonomously, 
coupled only by the local network and its broadcast capabilities. 

The rwho server, in a simplified form, is pictured below: 

Revision B of 17 February 1986 



30 IPC Primer 

main () 
{ 

sp = getservbyname("who", "udptl); 
net = getnetbyname("localnet"); 
sin.sin addr inet_makeaddr(INADDR_ANY, net); 
sin.sin-port = sp->s-port ; 

s = socket(AF_INET, SOCK_DGRAM, 0); 
bind(s, &sin, sizeof(sin»; 

sigset(SIGALRM, onalrm); 
onalrm(); 
for (;;) { 

struct whod wd; 
int cc, whod, len = sizeof(from); 

cc = recvfrom(s, (char *)&wd, sizeof(struct whod), 
0, &from, &len); 

if (cc <= 0) { 

if (cc < 0 && errno != EINTR) 
perror("rwhod: recv"); 

continue; 

if (from.sin-port != sp->s-port) { 
fprintf(stderr, tlrwhod: %d: bad from port\n", 

ntohs(from.sin-port»; 
continue; 

if (!verify(wd.wd_hostname» 
fprintf(stderr, 

"rwhod: malformed hostname from %x\n", 
ntohl(from.sin_addr.s_addr»; 

continue; 

sprintf (path, "%s/whod.%s", RWHODIR, wd.wd_hostname), 
whod = open(path, O_FWRONLYIO_FCREATEIO_FTRUNCATE, 

0666) ; 

(void)time(&wd.wd_recvtime); 
(void) write (whod, (char *)&wd, cc); 
(void)close(whod); 

There are two separate tasks perfonned by the server. The first task is to act as a 
receiver of status information broadcast by other hosts on the network. This job 
is carried out in the main loop of the program. Packets received at the rwho port 
are interrogated to insure they've been sent by another rwho server process, then 
are time stamped with their arrival time and used to update a file indicating the 
status of the host. When a host has not been heard from for an extended period 

~\sun ,~ microsystems 
Revision B of 17 February 1986 



Chapter 4 - ClienUServer Model 31 

of time, the database interpretation routines assume the host is down and indicate 
such on the status reports. This algorithm is prone to error, as a server may be 
down while a host is actually up, but selVes our current needs. 

The second task performed by the server is to supply information regarding the 
status of its host. This involves periodically acquiring system status information, 
packaging it up in a message, and broadcasting it on the local network for other 
rwho servers to hear. The supply function is triggered by a timer and runs off a 
signal. Locating the system status information is somewhat involved, but unin­
teresting. Deciding where to transmit the resultant packet does, however, indi­
cates some problems with the current protocol. 

Status information is broadcast on the local network. For networks which do not 
support the notion of broadcast another scheme must be used to simulate or 
replace broadcasting. One possibility is to enumerate the known neighbors 
(based on the status received). This, unfortunately, requires some bootstrapping 
information, as a server started up on a quiet network will have no known neigh­
bors and thus never receive, or send, any status information. This is the identical 
problem faced by the routing table management process in propagating routing 
status information. The standard solution, unsatisfactory as it may be, is to 
inform one or more selVers of known neighbors and request that they always 
communicate with these neighbors. If each selVer has at least one neighbor sup­
plying it, status information may then propagate through a neighbor to hosts 
which are not (possibly) directly neighbors. If the selVer is able to support net­
works which provide a broadcast capability, as well as those which do not, then 
networks with an arbitrary topology may share status information. 5 

The second problem with the current scheme is that the rwho process services 
only a single local network, and this network is found by reading a file. It is 
important that software operating in a distributed environment not have any site­
dependent information compiled into it This would require a separate copy of 
the selVer at each host and make maintenance a severe headache. The Sun sys­
tem attempts to isolate host-specific information from applications by providing 
system calls which return the necessary information.6 The rwho server perfonns 
a lookup in a file to find its local network. A better, though still unsatisfactory, 
scheme used by the routing process is to interrogate the system data structures to 
locate those directly connected networks. A mechanism to acquire this informa­
tion from the system would be a useful addition. 

S One must, however. be concerned about loops. That is. if a host is connected to multiple networks. it will 
receive status information from itself. This can lead to an endless. wasteful. exchange of information. 

6 An example of such a system call is the gethost1Jlll1U! (2) call. which returns the host's official name. 

Revision B of 17 February 1986 





5 
Advanced Topics 

Advanced Topics .......................................................................................................................... 3S 

5.1. Out-of-Band Data ............................................................................................................ 35 

5.2. Signals and Process Groups ....................................................................................... 37 

5.3. Pseudo Tenninals ............................................................................................................ 37 

5.4. Internet Address Binding ............................................................................................ 38 

5.5. Broadcasting and Datagram Sockets .................................................................... 40 

5.6. Signals .................................................................................................................................... 41 

5.7. Discarding Sockets Quickly ...................................................................................... 42 





5.1. Out-of-Band Data 

5 
Advanced Topics 

A number of facilities has yet to be discussed. For most users of the IPC, 
mechanisms already described suffice for constructing distributed applications. 
However, others may find need to use some of the features considered in this sec­
tion. 

The stream socket abstraction includes the notion of out-oj-band data. Out-of­
band data is a logically independent transmission channel associated with each 
pair of connected stream sockets. Out-of-band data is delivered to the user 
independently of normal data along with the S I GURG signal. In addition to the 
information passed, a logical mark is placed in the data stream to indicate the 
point at which the out-of-band data was sent. The remote login and remote shell 
applications use this facility to propagate signals between client and server 
processes. When a signal is expected to flush any pending output from the 
remote process(es), all data up to the mark in the data stream is discarded. 

The stream abstraction defines that the out-of-band data facilities must support 
the reliable delivery of at least one out-of-band message at a time. This message 
may contain at least one byte of data, and at least one message may be pending 
delivery to the user at anyone time. For communications protocols which sup­
port only in-band signaling (that is, the urgent data is delivered in sequence with 
the normal data), the system extracts the data from the normal data stream and 
stores it separately. This allows users to choose between receiving the urgent 
data in order, and receiving it out of sequence without having to buffer all the 
intervening data. 

To send an out-of-band message, supply the MSG_OOB flag to a send () or 
sendto () call, and to receive out-of-band data, indicate the MSG _ OOB flag to a 
recv () or recvfrom () call. To find out if the read pointer is currently point­
ing at the mark in the data stream, the SIOCATMARK ioctl is provided: 

( ioctl(s, SIOCATMARK, &yes); 

If ye s is a I on return, the next read will return data after the mark. Otherwise 
(assuming out-of-band data has arrived), the next read will provide data sent by 
the client prior to transmission of the out-of-band signal. The routine used in the 
remote login process to flush output on receipt of an interrupt or quit signal is 
shown below: 

] 

35 Revision B of 17 February 1986 



36 IPC Primer 

oob () 
{ 

int out = 1+1; 
char waste [BUFSIZ], mark; 

signal(SIGURG, oob); 
/* flush local terminal input and output */ 
ioctl(1, TIOCFLUSH, (char *)&out); 
for (;;) { 

if (ioctl(rem, SIOCATMARK, &mark) < 0) { 
perror("ioctl"); 
break; 

if (mark) 
break; 

(void)read(rem, waste, sizeof(waste»; 

recv(rem, &mark, 1, MSG_OOB); 

When setting up a socket that will receive out-of-band data, it is necessary to use 
the SIOCSPGRP ioctl () call, so that the process will be sent the SIGURG 
signal. Here is some code to set up a socket: 

~~~un 
~ rmcrosystems

Revision B of 17 February 1986

5.2. Signals and Process
Groups

5.3. Pseudo Terminals

Chapter 5 - Advanced Topics 37

int Client; /* global socket handle */

readit(client)
int client;

/* set up socket with your server */

{

char buf[BUFSIZE];
int oobdata () ;
int fd, pid, n;

/* catch out-of-band messages; make ioctl call */
signal(SIGURG, oobdata);
pid = -getpid();
if (ioctl(client, SIOCSPGRP, (char *)&pid) < 0)

perror("ioctl: SIOCSPGRP");
Client = client;
if «fd = creat ("testout", MODE» -1) {

perror("testout failed");
exit(5);

/* read and write normal data */
while «n = recv(client,buf,BUFSIZE,O» > 0)

write(fd,buf,BUFSIZE);
close(fd);

oobdata ()
{

char mark;

recv(Client, &mark, 1, MSG_OOB);
printf("urgent message %c\n", mark);

Due to the existence of the SIGURG and SIGIO signals, each socket has an
associated process group (just as is done for tenninals). This process group has
to be initialized to the process group of its creator, which is -getpid (). It
may be redefined at a later time with the SIOCSPGRP ioctl:

(ioctl(s, SIOCSPGRP, &pgrp);

A similar ioctl, SIOCGPGRP, is available for detennining the current process
group of a socket.

Many programs will not function properly without a terminal for standard input
and output. Since a socket is not a terminal, it is often necessary to have a pro­
cess communicating over the network do so through a pseudo terminal. A
pseudo tenninal is actually a pair of devices, master and slave, which allow a
process to serve as an active agent in communication between processes and
users. Data written on the slave side of a pseudo terminal is supplied as input to
a process reading from the master side. Data written on the master side is given
the slave as input. In this way, the process manipulating the master side of the

J

Revision B of 17 February 1986

38 IPC Primer

5.4. Internet Address Binding

pseudo tenninal has control over the infonnation read and written on the slave
side. The remote login server uses pseudo tenninals for remote login sessions.
A user logging in to a machine across the network is provided a shell with a slave
pseudo tenninal as standard input, output, and error. The server process then
handles the communication between the programs invoked by the remote shell
and the user's local client process. When a user sends an interrupt or quit signal
to a process executing on a remote machine, the client login program traps the
signal, sends an out-of-band message to the server process who then uses the sig­
nal number, sent as the data value in the out-of-band message, to perfonn a
killpg (2) on the appropriate process group.

Binding addresses to sockets in the Internet domain can be fairly complex. Com­
municating processes are bound by an association. An association is composed
of local and foreign addresses, and local and foreign ports. Port numbers are
allocated out of separate spaces, one for each Internet protocol. Associations are
always unique. That is, there may never be duplicate <protocol, local address,
local port, foreign address, foreign port> tuples.

The bind system call allows a process to specify half of an association, <local
address, local port>, while the connect and accept primitives are used to com­
plete a socket's association. Since the association is created in two steps, the
association uniqueness requirement indicated above could be violated unless care
is taken. Further, it is unrealistic to expect user programs to always know proper
values to use for the local address and local port since a host may reside on mul­
tiple networks and the set of allocated port numbers is not directly accessible to a
user.

To simplify local address binding the notion of a wildcard address has been pro­
vided. When an address is specified as INADDR_ANY (a manifest constant
defined in <netinet / in. h», the system interprets the address as meaning
any valid address. For example, to bind a specific port number to a socket, but
leave the local address unspecified, the following code might be used:

finclude <sys/types.h>
finclude <netinet/in.h>

struct sockaddr_in sin;

s = socket(AF INET, SOCK_STREAM, 0);
sin. sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin-port = MYPORT;
bind (s, (char *) &sin, sizeof (sin)) ;

Sockets with wildcarded local addresses may receive messages directed to the
specified port number, and addressed to any of the possible addresses assigned a
host. For example, if a host is on networks 46 and 10 and a socket is bound as
above, then an accept call is perfonned, the process will be able to accept con­
nection requests which arrive either from network 46 or network 10.

Revision B of 17 February 1986

Chapter 5 - Advanced Topics 39

In a similar fashion, a local port may be left unspecified (specified as zero), in
which case the system will select an appropriate port number for it. For exam­
ple:

sin.sin-port = 0;
bind(s, (char *) &sin, sizeof (sin)) ;

The system selects the port number based on two criteria. The first is that ports
numbered 0 through IPPORT _ RESERVED-l are reserved for privileged users
(that is, the super user). The second is that the port number is not currently
bound to some other socket. In order to find a free port number in the privileged
range the following code is used by the remote shell server:

struct sockaddr_in sin;

lport = IPPORT_RESERVED - 1;
sin.sin_addr.s_addr INADDR_ANY;

for (;;) {
sin.sin-port = htons«u_short)lport);
if (bind(s, (caddr_t)&sin, sizeof(sin» >= 0)

break;
if (errno != EADDRlNUSE && errno != EADDRNOTAVAIL)

perror("socket");
break;

lport--;
if (lport == IPPORT_RESERVED/2) {

fprintf(stderr, "socket: All ports in use\n");
break;

The restriction on allocating ports was done to allow processes executing in a
secure environment to perfonn authentication based on the originating address
and port number.

In certain cases the algorithm used by the system in selecting port numbers is
unsuitable for an application. This is due to associations being created in a two
step process. For example, the Internet file transfer protocol, FfP, specifies that
data connections must always originate from the same local port. However,
duplicate associations are avoided by connecting to different foreign ports. In
this situation the system would disallow binding the same local address and port
number to a socket if a previous data connection's socket were around. To over­
ride the default port selection algorithm then an option call must be performed
prior to address binding:

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *)0, 0);
bind(s, (char *) &sin, sizeof (sin)) ;

~~sun ~i{{? microsystems
Revision B of 17 February 1986

40 IPe Primer

5.5. Broadcasting and
Datagram Sockets

With the above call, local addresses may be bound which are already in use.
This does not violate the uniqueness requirement as the system still checks at
connect time to be sure any other sockets with the same local address and port do
not have the same foreign address and port (if an association already exists, the
error EADDRINUSE is returned).

Local address binding by the system is currently done somewhat haphazardly
when a host is on multiple networks. Logically, one would expect the system to
bind the local address associated with the network through which a peer was
communicating. For instance, if the local host is connected to networks 46 and
10 and the foreign host is on network 32, and traffic from network 32 were arriv­
ing via network 10, the local address to be bound would be the host's address on
network 10, not network 46. This unfortunately, is not always the case. For rea­
sons too complicated to discuss here, the local address bound may be appear to
be chosen at random. This property of local address binding will normally be
invisible to users unless the foreign host does not understand how to reach the
address selected.7

By using a datagram socket it is possible to send broadcast packets on many net­
works supported by the system (the network itself must support the notion of
broadcasting; the system provides no broadcast simulation in software). Broad­
cast messages can place a high load on a network since they force every host on
the network to service them.

To send a broadcast message, an Internet datagram socket should be created:

[
S = socket(AF_INET, S OCK_D GRAM, 0);]

----------~

and at least a port number should be bound to the socket:

sin. sin_family = AF_INETi
sin.sin_addr.s_addr = INADDR_ANYi
sin.sin-port = MYPORT;
bind (s, (char *) &sin, sizeof (sin)) i

Then the message should be addressed as:

dst.sin_family = AF_INETi
inet_makeaddr(net, INADD~ANY)i

dst.sin-port = DESTPORT;

and, finally, a sendto call may be used:

sendto(s, buf, buflen, 0, &dst, sizeof(dst»i

7 For example. if network 46 were unknown to the host on network 32. and the local address were bound to
that located on network 46, then even though a route between the two hosts existed through network 10, a
connection would fail.

Revision B of 17 February 1986

5.6. Signals

Chapter 5 - Advanced Topics 41

Received broadcast messages contain the senders address and port (datagram
sockets are anchored before a message is allowed to go out).

There are a couple of minor problems in the above example. One is created
because INADDR _ANY has two meanings:

1. Fill in my own address, and,

2. Broadcast.

Because of requests from the ARPA community, broadcast must at some time in
the future be changed to -1 instead of 0, so that broadcast will no longer be
INADDR _ANY. The second problem is how do you get your net number? You
could use the SIOCGICONF ioctl call, or you could get your own address and
do a inet netof On that

Two new signals have been added to the system which may be used in conjunc­
tion with the IPC facilities. The S IGURG signal is associated with the existence
of an urgent condition. The SIGIO signal is used with asynchronous I/O.
SIGURG is currently supplied a process when out-of-band data is present at a
socket. If multiple sockets have out-of-band data awaiting delivery, a select call
may be used to determine those sockets with such data.

An old signal which is useful when constructing server processes is SIGCHLD.
This signal is delivered to a process when any children processes have changed
state. Normally servers use the signal to reap child processes after exiting. For
example, the remote login server loop shown in section 4 may be augmented as
follows:

int reaper () ;

signal (SIGCHLD, reaper);
listen(f, 10);
for (;;) {

int g, len = sizeof(from);

g = accept(f, &from, &len, 0);
if (g < 0) {

if (errno != EINTR)
perror("rlogind: accept");

continue;

finclude <wait.h>
reaper ()
{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)

Revision B of 17 February 1986

42 IPC Primer

5.7. Discarding Sockets
Quickly

If the parent server process fails to reap its children, a large number of zombie
processes may be created.

Nonnally sockets hang around for a while after shutdown (). To have sockets
disappear quickly, use these calls:

s = socket(AF_INET, SOCK_STREAM, 0);
if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *)0, 0)

== -1) {
perror("server REUSEADDR");
exit(l);

if (setsockopt(s, SOL_SOCKET, SO_DONTLINGER, (char *)0, 0)
== -1) {

perror("server DONTLINGER");
exit(l);

Then be sure to use shutdown (s, 2) to close the socket.

Revision B of 17 February 198c

[ndex

Special Characters
-getpid (), 37
(dev/foo, 7,9
(etc/hosts, 18
(etc/services, 20
(netcib.h>,17
(netinet/in.h>, 8, 38
(sys/socket.h>,8

1
L«fd, 13

A
:lccept () , 10, 11,27
iddress binding, 38
idvanced topics, 35
l\F_lNET,8
I\F_UNIX,8

B
bind () , 9, 27
broadcasting, 40
buf,13
buflen,13

c
char, 18
clienVserver model, 25
clients, 27
close (), 12
communication domains, 7
connect () , 10
connectionless servers, 28
connectionless sockets, 13

D
data transfer, 11
datagram sockets, 40
discarding sockets quickly, 42
doit (), 27

E
EADDRINUSE,40
ECONNREFUSED, 11

-43-

EINTR, 14
ENOBUFS,9
EOF,12
EPROTONOSUPPORT,9
EPROTOTYPE, 9
errno,13
ETlMEDOUT,l1

F
fd, 13
flags, 12, 13
from, 11, 13
fromlen, 11, 13

G
gethostbyname(),28
gethostbynameandnet,20
gethostybyname(),18
getservbyname(),20
getservbyport(),20

H
h_addr,18
host names, 18
hostent,18
how, 12

I
110 multiplexing, 13
INADDR_ANY, 38, 41
inet_netof,41
Internet address binding, 38
ioctl, 35, 37, 41
ioctl (), 36
IPPORT_RESERVED,39

L
listen (), 10, 11

M
mpx,3
MSG_OOB,35
MSG _PEEK, 12

Index Continued

N W
netent,19 write (), 11, 12
network library routines, 17
network names, 19 y
nfds,14 yes, 35

0
out-of-band data, 35

p
poll, 14
protocol names, 20
protoent,20
pseudo terminals, 37

R
read () , 11, 12
recv (), 12,35
recvfrom, 13
recvfrom (), 35
rwho, 28, 29, 30,31

S
s,13
select (), 13, 14
send (), 12,35

• sendto (), 13, 35
servent,20
servers, 26
service names, 20
shutdown () , 12, 42
SIGCHLD, 27, 41
SIGIO, 14,37,41
signals, 41
signals and process groups, 37
SIGPIPE,12
SIGURG,14,35,36,37,41
sin,9
SIOCATMARK,35
SIOCGICONF,41
SIOCGPGRP,37
SIOCSPGRP, 36, 37
SOCK _DGRAM, 8
SOCK_RAW, 8
SOCK_STREAM, 8
socket binding, 7, 9
socket connections, 10
socket creation, 8
socket discarding, 12
socket types, 7
sockets, 7
struct in_addr *, 18
struct timeval, 14

T
timeout, 14
to, 13
tolen, 13

-44-

Network Implementation
Notes

Contents

Chapter 1 Introduction .. 3

1.1. Overview .. 3

1.2. Goals ... 4

Chapter 2 Memory and Addressing .. 7

2.1. Internal Address Representation ... 7

2.2. Memory Management ... 7

Chapter 3 Internal Layering .. 13

3.1. Socket Layer ... 13

Socket State .. 14

Socket Data Queues ... 15

Socket Connection Queueing ... 15

3.2. Protocol Layer(s) ... 16

3.3. Network-Interface Layer ... 17

Chapter 4 Socket/Protocol Interface .. 23

Chapter 5 ProtocollProtocol Interface .. 29

5.1. pr_output .. 29

5.2. pr _input ... 30

5.3. pr_ctlinput .. 30

5.4. pr _ ctloutput ... 30

Chapter 6 ProtocollNetwork-Interface Interface .. 33

-i-

Contents Continued

6.1. Packet Transmission .. 33

6.2. Packet Reception ... 33

Chapter 7 Gateways and Routing Issues ... 37

7.1. Routing Tables .. 37

7.2. Routing Table Interface ... 39

7.3. User-Level Routing Policies ... 39

Chapter 8 Raw Sockets .. 43

8.1. Control Blocks .. 43

8.2. Input Processing ... 44

8.3. Output Processing ... 44

Chapter 9 Buffering and Congestion Control ... 47

9.1. Memory Management ... 47

9.2. Protocol Buffering Policies .. 48

9.3. Queue Limiting .. '" 48

9.4. Packet Forwarding .. 48

Chapter 10 Out of Band Data .. 51

Appendix A Acknowledgements and References .. 55

A.I. References .. 55

-ii-

1
Introduction

Introduction ... 3

1.1. Overview .. 3

1.2. Goals ... 4

1.1. Overview

1
Introduction

This report describes the internal structure of the networking facilities of the Sun
Workstation version of the UNIXt operating system. These facilities are derived
from the networking facilities added at U .C. Berkeley in the Berkeley 4.2 release
of the system. The system provides a uniform user interface to networking, and a
structure that permits system implementors to add new facilities. The internal
structure is not visible to the user, rather it is intended to aid implementors of
communication protocols and network services by providing a framework that
promotes code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and sys­
tem interface, as described in the System Interface Overview at the beginning of
the Sun System Interface Manual. Basic understanding of network communica­
tion concepts is assumed; where required any additional ideas are introduced.

The remainder of this document provides a description of the system internals,
avoiding, when possible, those portions utilized only by the interprocess com­
munication facilities.

If we consider the International Standards Organization's (ISO) Open System
Interconnection (OSI) model of network communication [lS081] [Zimmer­
mann80], the networking facilities described here correspond to a portion of the
session layer (layer 3) and all of the transport and network layers (layers 2 and 1,
respectively).

The network layer provides possibly imperfect data transport services with
minimal addressing structure. Addressing at this level is normally host to host,
with implicit or explicit routing optionally supported by the communicating
agents.

At the transport layer the notions of reliable transfer, data sequencing, flow con­
trol, and service addressing are normally included. Reliability is usually
managed by explicit acknowledgement of data delivered. Failure to ack­
nowledge a transfer results in retransmission of the data. Sequencing may be
handled by tagging each message handed to the network layer by a sequence
number and maintaining state at the endpoints of communication to utilize
received sequence numbers in reordering data which arrives out of order.

t UNIX is a trademark of AT&T Bell Laboratories.

3 Revision B of 17 February 1986

4 Network Implementation

1.2. Goals

The session layer facilities may provide forms of addressing which are mapped
into formats required by the transport layer, service authentication and client
authentication, etc. Various systems also provide services such as data encryp­
tion and address and protocol translation.

The following sections begin by describing some of the common data structures
and utility routines, then examine the intemallayering. The contents of each
layer and its interface are considered. Certain of the interfaces are protocol
implementation specific. For these cases examples have been drawn from the
Internet [Cerf78] protocol family. Later sections cover routing issues, the design
of the raw socket interface and other miscellaneous topics.

The networking system was designed with the goal of supporting multiple proto­
colJamilies and addressing styles. This required information to be "hidden" in
common data structures which could be manipulated by all the pieces of the sys­
tem, but which required interpretation only by the protocols which "controlled"
it. The system described here attempts to minimize the use of shared data struc­
tures to those kept by a suite of protocols (a protocolJamily) , and those used for
rendezvous between "synchronous" and "asynchronous" portions of the system
(for example, queues of data packets are filled at interrupt time and emptied
based on user requests).

A major goal of the system was to provide a framework within which new proto­
cols and hardware could easily be supported. To this end, a great deal of effort
has been extended to create utility routines which hide many of the more com­
plex and/or hardware dependent chores of networking. Later sections describe
the utility routines and the underlying data structures they manipulate.

Revision B of 17 February 1986

2
Mefllory and Addressing

Memory and Addressing ... 7

2.1. Internal Address Representation ... 7

2.2. Memory Management ... 7

2.1. Internal Address
Representation

2.2. Memory Management

2
Memory and Addressing

Common to all portions of the system are two data structures. These structures
are used to represent addresses and various data objects. Addresses, internally
are described by the sockaddr structure,

struct sockaddr {

} ;

short
char

sa_family;
sa_data[14];

/* data format identifier */
/* address */

All addresses belong to one or more address families which define their format
and interpretation. The sa Jamily field indicates which address family the
address belongs to, the sa_data field contains the actual data value. The size of
the data field, 14 bytes, was selected based on a study of current address fonnats

A single mechanism is used for data storage: memory buffers, or mbuf s. An
mbuf is a structure of the form:

struct mbuf
struct mbuf *m_next; /* next buffer in chain */
u_long m_off; /* offset of data */
short m_len; /* amount of data in this mbuf
short m_type; /* mbuf type (accounting) */
u char m_dat [MLEN] ; /* data storage *1

*1

struct mbuf *m_act; /* link in higher-level mbuf list
} ;

The m _next field is used to chain mbufs together on linked lists, while the m _act
field allows lists of mbufs to be accumulated. By convention, the mbufs com­
mon to a single object (for example, a packet) are chained together with the
m _next field, while groups of objects are linked via the m _ act field (possibly
when in a queue).

Each mbuf has a small data area for storing infonnation, m _ dat. The m _len field
indicates the amount of data, while the m _ off field is an offset to the beginning of
the data from the base of the mbuf. Thus, for example, the macro mtod, which
converts a pointer to an mbuf to a pointer to the data stored in the mbuf, has the
fonn

#define mtod(x,t) ((t) ((int) (x) + (x) ->m_off))

(note the t parameter, a C type cast, is used to cast the resultant pointer for proper

~~sun ~~ microsystems
7 Revision B of 17 February 1986

-I

8 Network Implementation

assignment).

In addition to storing data directly in the mbuf's data area, data of page size may
be also be stored in a separate area of memory. The mbuf utility routines main­
tain a pool of pages for this purpose and manipulate a private page map for such
pages. The virtual addresses of these data pages precede those of mbufs, so when
pages of data are separated from an mbuf, the mbuf data offset is a negative
value. An array of reference counts on pages is also maintained so that copies of
pages may be made without core to core copying (copies are created simply by
duplicating the relevant page table entries in the data page map and incrementing
the associated reference counts for the pages). Separate data pages are currently
used only when copying data from a user process into the kernel, and when
bringing data in at the hardware level. Routines which manipulate mbufs are not
normally aware if data is stored directly in the mbuf data array, or if it is kept in
separate pages.

The following utility routines are available for manipulating mbuf chains:

m = m_copy(mO, off, len);
The m _copy routine create a copy of all, or part, of a list of the mbufs in mO.
Len bytes of data, starting offbytes from the front of the chain, are copied.
Where possible, reference counts on pages are used instead of core to core
copies. The original mbuf chain must have at least off + len bytes of data. If
len is specified as M _ COpy ALL, all the data present, offset as before, is
copied.

m_cat(m, n);
The mbuf chain, n, is appended to the end of m. Where possible, compac­
tion is performed.

m_adj (m, diff);
The mbuf chain, m is adjusted in size by diffbytes. If diff is non-negative,
diffbytes are shaved off the front of the mbuf chain. If diffis negative, the
alteration is performed from back to front. No space is reclaimed in this
operation, alterations are accomplished by changing the m _len and m _off
fields of mbufs.

m = m-pullup(mO, size);
After a successful call to m "pullup, the mbuf at the head of the returned list,
m, is guaranteed to have at least size bytes of data in contiguous memory
(allowing access via a pointer, obtained using the mtod macro). If the origi­
nal data was less than size bytes long, len was greater than the size of an
mbuf data area (112 bytes), or required resources were unavailable, m is 0
and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on
reception. For example, if a packet is received and only 8 of the necessary
16 bytes required for a valid packet header are present at the head of the list
of mbufs representing the packet, the remaining 8 bytes may be "pulled up"
with a single m "pullup call. If the call fails the invalid packet will have been
discarded.

~\sun ~~ microsystems
Revision B of 17 February 198t

Chapter 2 - Memory and Addressing 9

By insuring mbufs always reside on 128 byte boundaries it is possible to always
locate the mbuf associated with a data area by masking off the low bits of the vir­
tual address. This allows modules to store data structures in mbufs and pass
them around without concern for locating the original mbuf when it comes time
to free the structure. The dtom macro is used to convert a pointer into an mbuf s
data area to a pointer to the mbuf,

idefine dtom(x) «struct mbuf *) «int)x & -(MSIZE-l»)

Mbufs are used for dynamically allocated data structures such as sockets, as well
as memory allocated for packets. Statistics are maintained on mbuf usage and
can be viewed by users using the netstat(8) program.

Revision B of 17 February 1986

3
[nternal Layering

mternal Layering .. 13

3.1. Socket Layer ... 13

Socket State .. 14

Socket Data Queues ... 15

Socket Connection Queueing ... 15

3.2. Protocol Layer(s) ... 16

3.3. Network-Interface Layer ... 17

3.1. Socket Layer

3
Internal Layering

The internal structure of the network system is divided into three layers. These
layers correspond to the services provided by the socket abstraction, those pro­
vided by the communication protocols, and those provided by the hardware inter­
faces. The communication protocols are normally layered into two or more indi­
vidual cooperating layers, though they are collectively viewed in the system as
one layer providing services supportive of the appropriate socket abstraction.

The following sections describe the properties of each layer in the system and the
interfaces each must conform to.

The socket layer deals with the interprocess communications facilities provided
by the system. A socket is a bidirectional endpoint of communication which is
"typed" by the semantics of communication it supports. The system calls
described in the System Interface Overview are used to manipulate sockets.

A socket consists of the following data structure:

struct socket {

} ;

short so_type; /*
short so_options; /*
short so_linger; /*
short so_state: /*
caddr t so-pcb: /*
struct protosw *so-proto;
struct socket *so_head:/*
struct socket *so_qO; /*
short so_qOlen: /*
struct socket *so_q: /*
short so_qlen; /*
short so_qlimit: /*
struct sockbuf so_snd; /*
struct sockbuf so_rev; /*
short so_timeo: /*
u short so_error: /*
short so_oobmark: /*
short so-pgrp; /*

generic type * /
from socket call */
time to linger while closing */
internal state flags */
protocol control block */

/* protocol handle */
back pointer to accept socket */

queue of partial connections */
partials on so_qO */
queue of incoming connections */

number of connections on so_q */

max number queued connections */

send queue */
receive queue */
connection timeout */
error affecting connection */
chars to oob mark */
pgrp for signals */

Each socket contains two data queues, so _rev and so _snd, and a pointer to rou­
tines which provide supporting services. The type of the socket, so _ type is

13 Revision B of 17 February 1986

14 Network Implementation

Socket State

defined at socket creation time and used in selecting those services which are
appropriate to support it. The supporting protocol is selected at socket creation
time and recorded in the socket data structure for later use. Protocols are defined
by a table of procedures, the protosw structure, which will be described in detail
later. A pointer to a protocol specific data structure, the "protocol control
block" is also present in the socket structure. Protocols control this data struc­
ture and it normally includes a back pointer to the parent socket structure(s) to
allow easy lookup when returning information to a user (for example, placing an
error number in the so _error field). The other entries in the socket structure are
used in queueing connection requests, validating user requests, storing socket
characteristics (for example, options supplied at the time a socket is created), and
maintaining a socket's state.

Processes' 'rendezvous at a socket" in many instances. For instance, when a
process wishes to extract data from a socket's receive queue and it is empty, or_
lacks sufficient data to satisfy the request, the process blocks, supplying the
address of the receive queue as an "wait channel' to be used in notification.
When data arrives for the process and is placed in the socket's queue, the blocked
process is identified by the fact it is waiting "on the queue".

A socket's state is defined from the following:

fdefine SS NOFDREF OxOOl /* no file table ref any more
fdefine SS ISCONNECTED OxOO2 /* socket connected to a peer
fdefine SS ISCONNECTING OxOO4 /* in process of connecting t(-
fdefine SS ISDISCONNECTING OxOO8 /* in process of disconnect: -
fdefine SS CANTSENDMORE Ox01O /* can't send more data to peE
idefine SS CANTRCVMORE Ox020 /* can't receive more data fr(
idefine SS CONNAWAITING Ox040 /* connections awaiting accep1
idefine SS RCVATMARK Ox080 /* at mark on input */
idefine SS PRIV OxlOO /* privileged */
idefine SS NBIO Ox200 /* non-blocking ops */
idefine SS ASYNC Ox400 /* async i/o notify */

The state of a socket is manipulated both by the protocols and the user (through
system calls). When a socket is created the state is defined based on the type of
input/output the user wishes to perform. "Non-blocking" I/O implies a process
should never be blocked to await resources. Instead, any call which would block
returns prematurely with the error EWOULDBLOCK (the service request may be
partially fulfilled, for example, a request for more data than is present).

If a process requested "asynchronous" notification of events related to the
socket the SIGIO signal is posted to the process. An event is a change in the
socket's state, examples of such occurances are: space becoming available in the
send queue, new data available in the receive queue, connection establishment or
disestablishment, etc.

A socket may be marked' 'priviledged" if it was created by the super-user. Only
priviledged sockets may send broadcast packets, or bind addresses in priviledged
portions of an address space.

Revision B of 17 February 1986

Socket Data Queues

Socket Connection Queueing

Chapter 3 - Internal Layering 15

A socket's data queue contains a pointer to the data stored in the queue and other
entries related to the management of the data. The following structure defines a
data queue:

struct sockbuf {
/* actual chars in buffer */
/* max actual char count */
/* chars of mbufs used */
/* max chars of mbufs to use */
/* low water mark */
/* timeout */
/* the mbuf chain */

short
short
short
short
short
short
struct
struct
short

sb_cc;
sb_hiwat;
sb_mbcnt;
sb_mbmax;
sb_lowat;
sb_timeo;
mbuf *sb_mb;
proc *sb_sel;
sb_flags;

/* process selecting read/write *1
/* flags, see below */

} ;

Data is stored in a queue as a chain of mbufs. The actual count of characters as
well as high and low water marks are used by the protocols in controlling the
flow of data. The socket routines cooperate in implementing the flow control
policy by blocking a process when it requests to send data and the high water
mark has been reached, or when it requests to receive data and less than the low
water mark is present (assuming non-blocking I/O has not been specified).

When a socket is created, the supporting protocol "reserves" space for the send
and receive queues of the socket. The actual storage associated with a socket
queue may fluctuate during a socket's lifetime, but is assumed this reservation
will always allow a protocol to acquire enough memory to satisfy the high water
marks.

The timeout and select values are manipulated by the socket routines in imple­
menting various portions of the interprocess communications facilities and will
not be described here.

A socket queue has a number of flags used in synchronizing access to the data
and in acquiring resources;

fdefine SB LOCK OxOl /* lock on data queue (so _rcv only)
fdefine SB WANT Ox02 /* someone is waiting to lock */
fdefine SB WAIT Ox04 /* someone is waiting for data/space
fdefine SB SEL Ox08 /* buffer is selected */
fdefine SB CaLL OxlO /* collision selecting */

The last two flags are manipulated by the system in implementing the select
mechanism.

In dealing with connection oriented sockets (for example, SOCK _STREAM) the
two sides are considered distinct. One side is termed active, and generates con­
nection requests. The other side is called passive and accepts connection
requests.

From the passive side, a socket is created with the option SO _ ACCEPTCONN
specified, creating two queues of sockets: so _ qO for connections in progress and
so _ q for connections already made and awaiting user acceptance. As a protocol
is preparing incoming connections, it creates a socket structure queued on so _ qO

*1

*/

Revision B of 17 February 1986

16 Network Implementation

3.2. Protocol Layer(s)

by calling the routine sonewconnO. When the connection is established, the
socket structure is then transfered to so _ q, making it available for an accept.

If an SO _ ACCEPTCONN socket is closed with sockets on either so _qO or so _q,
these sockets are dropped.

Protocols are described by a set of entry points and certain socket visible charac­
teristics, some of which are used in deciding which socket type(s) they may sup­
port.

An entry in the "protocol switch" table exists for each protocol module
configured into the system. It has the following form:

struct protosw {

} ;

short pr_type;
short pr_family;
short pr-protocol;
short pr_flags;
/*

/* socket type used for */
/* protocol family */
/* protocol number */
/* socket visible attributes */

* protocol-protocol hooks
*/

int (*pr_input) ();
int (*pr_output) ();
int (*pr_ctlinput) ();
int (*pr_ctloutput) ();
/*

* user-protocol hook
*/

int (*pr_usrreq) ();
/*

* utility hooks
*/

int (*pr_init) () ;
int (*pr_fasttimo) ();
int (*pr_slowtimo) ();
int (*pr_drain) ();

/* input to protocol (from below
/* output to protocol (from abov~
/* control input (from below) */
/* control output (from above) *

/* user request */

/* initialization routine */
/* fast timeout (200ms) */
/* slow timeout (500ms) */
/* flush any excess space possib.

A protocol is called through the pr _init entry before any other. Thereafter it is
called every 200 milliseconds through the pr Jasttimo entry and every 500 mil­
liseconds through the pr _slowtimo for timer based actions. The system will call
the pr _drain entry if it is low on space and this should throwaway any non­
critical data.

Protocols pass data between themselves as chains of mbufs using the pr _input
and pr _output routines. Pr _input passes data up (towards the user) and
pr _output passes it down (towards the network); control information passes up
and down on pr _ ctlinput and pr _ ctloutput. The protocol is responsible for the
space occupied by any the arguments to these entries and must dispose of it.

The pr _ userreq routine interfaces protocols to the socket code and is described
below. The pr Jags field is constructed from the following values:

Revision B of 17 February 1986

3.3. Network-Interface Layer

Chapter 3 - Internal Layering 17

fdefine PR ATOMIC OxOl /* exchange atomic messages only j

fdefine PR ADDR Ox02 /* addresses given with messages j

fdefine P R_CONNREQU IRED Ox04 /* connection required by protocoJ
fdefine PR WANTRCVD Ox08 /* want PRU RCVD calls */
fdefine PR RIGHTS OxlO /* passes capabilities */

Protocols which are connection-based specify the PR _ CONNREQUIRED flag so
that the socket routines will never attempt to send data before a connection has
been established. If the PR _ W ANTRCVD flag is set, the socket routines will
notfiy the protocol when the user has removed data from the socket's receive
queue. This allows the protocol to implement acknowledgement on user receipt,
and also update windowing information based on the amount of space available
in the receive queue. The PR_ADDR field indicates any data placed in the
socket's receive queue will be preceded by the address of the sender. The
PR _ATOMIC flag specifies each user request to send data must be perfonned in
a single protocol send request; it is the protocol's responsibility to maintain
record boundaries on data to be sent. The PR _RIGHTS flag indicates the proto­
col supports the passing of capabilities; this is currently used only the protocols
in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table looking for
an appropriate protocol to support the type of socket being created. The pr _ type
field contains one of the possible socket types (for example, SOCK_STREAM),
while the pr Jamily field indicates which protocol family the protocol belongs to.
The pr yrotocol field contains the protocol number of the protocol, normally a
well known value.

Each network-interface configured into a system defines a path through which
packets may be sent and received. Nonnally a hardware device is associated
with this interface, though there is no requirement for this (for example, all sys­
tems have a software "loopback" interface used for debugging and performance
analysis). In addition to manipulating the hardware device, an interface module
is responsible for encapsulation and deencapsulation of any low level header
infonnation required to deliver a message to it's destination. The selection of
which interface to use in delivering packets is a routing decision carried out at a
higher level than the network-interface layer. Each interface normally identifies
itself at boot time to the routing module so that it may be selected for packet
delivery.

An interface is defined by the following structure,

.\sun ,~ microsystems
Revision B of 17 February 1986

18 Network Implementation

struct ifnet {
char *if_name; /* name, for example, "en" or "Ie
short if_unit; /* sub-unit for lower level drivE
short if_mtu; /* maximum transmission unit */
int if_net; /* network number of interface *J
short if_flags; /* up/down, broadcast, etc. */
short if_timer; /* time 'til if_watchdog called'
int if_host[2]; /* local net host number */
struct sockaddr if_addr;/* address of interface */
union {

struct sockaddr ifu_broadaddr;
struct sockaddr ifu_dstaddr;

if ifu;
struct ifqueue if snd;
int (*if_init) () ;
int (*if_output) ();
int (*if_ioctl) () ;
int (*if_reset) ();
int (*if_watchdog) ();

/* output queue */
/* init routine */
/* output routine */
/* ioctl routine */
/* bus reset routine */
/* timer routine */

int if_ipackets;
int if ierrors;
int if_opackets;
int if oerrors;
int if_collisions;

/* packets received on interf
/* input errors on interface
/* packets sent on interface
/* output errors on interface
/* collisions on csma interfa

struct ifnet *if_next;
} ;

Each interface has a send queue and routines used for initialization, if init, and
output, if_output. If the interface resides on a system bus, the routine if_reset
will be called after a bus reset has been performed. An interface may also specify
a timer routine, if_watchdog, which should be called every if_timer seconds (if
non-zero).

The state of an interface and certain characteristics are stored in the if Jiags field.
The following values are possible:

fdefine IFF UP Oxl /* interface is up */
fdefine IFF BROADCAST Ox2 /* broadcast address valid */
fdefine IFF DEBUG Ox4 /* turn on debugging */
fdefine IFF ROUTE Ox8 /* routing entry installed */
fdefine IFF POINTOPOINT OxlO /* interface is point-to-point
fdefine IFF NOTRAILERS Ox20 /* avoid use of trailers */
fdefine IFF RUNNING Ox40 /* resources allocated */

If the interface is connected to a network which supports transmission of broad­
cast packets, the IFF_BROADCAST flag will be set and the if_broadaddr field
will contain the address to be used in sending or accepting a broadcast packet. If
the interface is associated with a point to point hardware link (for example, a
DEC DMR -11), the IFF _ POINTOPOINT flag will be set and if_ dstaddr will con­
tain the address of the host on the other side of the connection. These addresses
and the local address of the interface, if addr, are used in filtering incoming
packets. The interface sets IFF_RUNNING after it has allocated system
resources and posted an initial read on the device it manages. This state bit is

1

Revision B of 17 February 1986

Chapter 3 - Internal Layering 19

used to avoid multiple allocation requests when an interface's address is
changed. The IFF _NOTRAILERS flag indicates the interlace should refrain
from using a trailer encapsulation on outgoing packets. 1

The information stored in an ifnet structure for point to point communication
devices is not currently used by the system internally. Rather, it is used by the
user level routing process in determining host network connections and in ini­
tially devising routes (refer to chapter 10 for more information).

Various statistics are also stored in the interface structure. These may be viewed
by users using the netstat(1) program.

The interface address and flags may be set with the SIOCSIFADDR and SIOC­
SIFFLAGS ioctls. SIOCSIFADDR is used to initially define each interlace's
address; SIOGSIFFLAGS can be used to mark an interface down and perlorm
site-specific configuration.

1 Trailer protocols are nonnally disabled on the Sun Workstation.

Revision B of 17 February 1986

4
Socket/Protocol Interface

SocketIProtocol Interface ... 23

4
Socket/Protocol Interface

The interface between the socket routines and the communication protocols is
through the pr _ usrreq routine defined in the protocol switch table. The follow­
ing requests to a protocol module are possible:

*define PRU ATTACH 0
*define PRU DETACH 1
*define PRU BIND 2
*define PRU LISTEN 3
*define PRU CONNECT 4
*define PRU ACCEPT 5
*define PRU DISCONNECT 6
*define PRU SHUTDOWN 7
*define PRU RCVD 8
*define PRU SEND 9
*define PRU ABORT 10
*define PRU CONTROL 11
*define PRU SENSE 12
*define PRU RCVOOB 13
*define PRU SENDOOB 14
*define PRU SOCKADDR 15
*define PRU PEERADDR 16
*define PRU CONNECT2 17

/* attach protocol */
/* detach protocol */
/* bind socket to address */
/* listen for connection */
/* establish connection to peer */
/* accept connection from peer */
/* disconnect from peer */
/* won't send any more data */
/* have taken data; more room now ?
/* send this data */
/* abort: fast DISCONNECT, DETACH?
/* control operations on protocol ?
/* return status into m */
/* retrieve out of band data */
/* send out of band data */
/* fetch socket's address */
/* fetch peer's address */
/* connect two sockets */

/* begin for protocols
*define PRU FASTTIMO
*define PRU SLOWTIMO
*define PRU PROTORCV
*define PRU PROTOSEND

internal use */
18 /* 200ms timeout */
19 /* 500ms timeout */
20 /* receive from below */
21 /* send to below */

A calIon the user request routine is of the fonn,

error = (*protosw[] .pr_usrreq) (up, req, m, addr, rights);
int error;
struct socket *up;
int req;
struct mbuf *m, *rights;
caddr_t addr;

The mbuf chain, m, and the address are optional parameters. The rights parame­
ter is an optional pointer to an mbuf chain containing user specified capabilities
(see the sendmsg and recvmsg system calls). The protocol is responsible for
disposal of both mbuf chains. A non-zero return value gives a UNIX error

~~sun ~~ microsystems
23 Revision B of 17 February 1986

24 Network Implementation

number which should be passed to higher level software. The following para­
graphs describe each of the requests possible.

PRU ATTACH
When a protocol is bound to a socket (with the socket system call) the proto­
col module is called with this request. It is the responsibility of the protocol
module to allocate any resources necessary. The "attach" request will
always precede any of the other requests, and should not occur more than
once.

PRU DETACH
This is the antithesis of the attach request, and is used at the time a socket is
deleted. The protocol module may deallocate any resources assigned to the
socket

PRU BIND
When a socket is initially created it has no address bound to it. This request
indicates an address should be bound to an existing socket. The protocol
module must verify the requested address is valid and available for use.

PRU LISTEN
The "listen" request indicates the user wishes to listen for incoming con­
nection requests on the associated socket. The protocol module should per­
form any state changes needed to carry out this request (if possible). A
"listen" request always precedes a request to accept a connection.

PRU CONNECT
The "connect" request indicates the user wants to a establish an association.
The addr parameter supplied describes the peer to be connected to. The
effect of a connect request may vary depending on the protocol. Virtual cir­
cuit protocols, such as TCP [PosteI80b], use this request to initiate establish­
ment of a TCP connection. Datagram protocols, such as UDP [posteI79],
simply record the peer's address in a private data structure and use it to tag
all outgoing packets. There are no restrictions on how many times a connect
request may be used after an attach. If a protocol supports the notion of
multi-casting, it is possible to use multiple connects to establish a multi-cast
group. Alternatively, an association may be broken by a
PRU _DISCONNECT request, and a new association created with a subse­
quent connect request; all without destroying and creating a new socket

PRU ACCEPT
Following a successful PRU _LISTEN request and the arrival of one or more
connections, this request is made to indicate the user has accepted the first
connection on the queue of pending connections. The protocol module
should fill in the supplied address buffer with the address of the connected
party.

PRU DISCONNECT
Eliminate an association created with a PR U _ CONNECT request

PRU SHUTDOWN
This call is used to indicate no more data will be sent and/or received (the
addr parameter indicates the direction of the shutdown, as encoded in the

Revision B of 17 February 1986

Chapter 4 - SockeUProtoco1 Interface 25

soshutdown system call). The protocol may, at its discretion, deallocate any
data structures related to the shutdown.

PRU RCVD
This request is made only if the protocol entry in the protocol switch table
includes the PR_ W ANTRCVD flag. When a user removes data from the
receive queue this request will be sent to the protocol module. It may be
used to trigger acknowledgements, refresh windowing information, initiate
data transfer, etc.

PRU SEND
Each user request to send data is translated into one or more PRU _SEND
requests (a protocol may indicate a single user send request must be
translated into a single PRU_SEND request by specifying the PR_ATOMIC
flag in its protocol description). The data to be sent is presented to the proto­
col as a list of mbufs and an address is, optionally, supplied in the addr
parameter. The protocol is responsible for preserving the data in the
socket's send queue if it is not able to send it immediately, or if it may need
it at some later time (for example, for retransmission).

PRU ABORT
This request indicates an abnormal termination of service. The protocol
should delete any existing association(s).

PRU CONTROL
The "control" request is generated when a user performs a UNIX ioctl sys­
tem call on a socket (and the ioctl is not intercepted by the socket routines).
It allows protocol-specific operations to be provided outside the scope of the
common socket interface. The addr parameter contains a pointer to a static
kernel data area where relevant information may be obtained or returned.
The m parameter contains the actual ioctl request code (note the non­
standard calling convention).

PRU SENSE
The "sense" request is generated when the user makes an/stat system call
on a socket; it requests status of the associated socket. There currently is no
common format for the status returned. Information which might be returned
includes per-connection statistics, protocol state, resources currently in use
by the connection, the optimal transfer size for the connection (based on
windowing information and maximum packet size). The addr parameter
contains a pointer to a static kernel data area where the status buffer should
be placed.

PRU RCVOOB
Any' 'out-of-band" data presently available is to be returned. An mbuf is
passed in to the protocol module and the protocol should either place data in
the mbuf or attach new mbufs to the one supplied if there is insufficient
space in the single mbuf.

PRU SENDOOB
Like PRU _SEND, but for out-of-band data.

Revision B of 17 February 1986

26 Network Implementation

PRU SOCKADDR
The local address of the socket is returned, if any is currently bound to the il
The address format (protocol specific) is returned in the addr parameter.

PRU PEERADDR
The address of the peer to which the socket is connected is returned. The
socket must be in a SS _ ISCONNECTED state for this request to be made to
the protocol. The address format (protocol specific) is returned in the addr
parameter.

PRU CONNECT2
The protocol module is supplied two sockets and requested to establish a
connection between the two without binding any addresses, if possible. Thi:
call is used in implementing the socketpair(2) system call.

The following requests are used internally by the protocol modules and are neve]
generated by the socket routines. In certain instances, they are handed to the
pr _ usrreq routine solely for convenience in tracing a protocol's operation (for
example, PRU_SLOWTIMO).

PRU FASTTIMO
A "fast timeout" has occured. This request is made when a timeout occurs
in the protocol's pr Jastimo routine. The addr parameter indicates which
timer expired.

PRU SLOWfIMO
A "slow timeout" has occured. This request is made when a timeout occur.
in the protocol's pr _slowtimo routine. The addr parameter indicates which
timer expired.

PRU PROTORCV
This request is used in the protocol-protocol interface, not by the routines. I
requests reception of data destined for the protocol and not the user. No pro
tocols currently use this facility.

PRU PROTOSEND
This request allows a protocol to send data destined for another protocol
module, not a user. The details of how data is marked "addressed to proto­
col" instead of "addressed to user" are left to the protocol modules. No
protocols currently use this facility.

~\sun ,~ microsystems
Revision B of 17 February 19E

5
Protocol/Protocol Interface

ProtocollProtocol Interface ... 29

5.1. pr_output .. 29

5.2. pr _input ... 30

5.3. pr_ctlinput .. 30

5.4. pr _ ctloutput ... 30

5.1. pr _output

5
Protocol/Protocol Interface

The interface between protocol modules is through the pr _ usrreq, pr _input,
pr _output, pr _ ctlinput, and pr _ ctloutput routines. The calling conventions for all
but the pr _ usrreq routine are expected to be specific to the protocol modules and
are not guaranteed to be consistent across protocol families. We will examine
the conventions used for some of the Internet protocols in this section as an
example.

The Internet protocol UDP uses the convention,

error = udp_output(inp, m);
int error;
struct inpcb *inp;
struct mbuf *m;

where the inp, "internet protocol control block", passed between modules con­
veys per connection state information, and the mbuf chain contains the data to be
sent. UDP performs consistency checks, appends its header, calculates a check­
sum, etc. before passing the packet on to the IP module:

error = ip_output(m, opt, ro, allowbroadcast);
int error;
struct mbuf *m, *opt;
struct route *ro;
int allowbroadcast;

The call to IP's output routine is more complicated than that for UDP, as befits
the additional work the IP module must do. The m parameter is the data to be
sent, and the opt parameter is an optional list of IP options which should be
placed in the IP packet header. The ro parameter is is used in making routing
decisions (and passing them back to the caller). The final parameter,
allowbroadcast is a flag indicating if the user is allowed to transmit a broadcast
packet. This may be inconsequential if the underlying hardware does not support
the notion of broadcasting.

All output routines return 0 on success and a UNIX error number if a failure
occured which could be immediately detected (no buffer space available, no
route to destination, etc.).

~\sun ~~ microsyslems
29 Revision B of 17 February 1986

30 Network Implementation

5.3. pr _ ctlinput

5.4. pr _ ctIoutput

Both UDP and TCP use the following calling convention,

(void) (*protosw[] .pr_input) (m);
struct mbuf *m;

Each mbuf list passed is a single packet to be processed by the protocol module.

The IP input routine is a software interrupt level routine, and so is not called with
any parameters. It instead communicates with network interfaces through a
queue, ipintrq, which is identical in structure to the queues used by the network
interfaces for storing packets awaiting transmission.

This routine is used to convey "control" information to a protocol module (Le.
infonnation which might be passed to the user, but is not data). This routine, and
the pr _ctloutput routine, have not been extensively developed, and thus suffer
from a "clumsiness" that can only be improved as more demands are placed on
it

The common calling convention for this routine is,

(void) (*protosw[] .pr_ctlinput) (req, info);
int req;
caddr_t info;

The req parameter is one of the following,

.fdefine PRC IFDOWN 0 /* interface transition */

.fdefine PRC ROUTEDEAD 1 /* select new route if poss£

.fdefine PRC_QUENCH 4 /* some said to slow down */

.fdefine PRC HOSTDEAD 6 /* normally from IMP */

.fdefine PRC HOSTUNREACH 7 /* ditto */

.fdefine PRC UNREACH NET 8 /* no route to network */ - -

.fdefine PRC_UNREACH_HOST 9 /* no route to host */

.fdefine PRC_UNREACH_PROTOCOL 10 /* dst says bad protocol */

.fdefine PRC_UNREACH_PORT 11 /* bad port .f */
fdefine PRC_MSGSIZE 12 /* message size forced drop
fdefine PRC REDIRECT NET 13 - - /* net routing redirect */
fdefine PRC REDIRECT HOST 14 /* host routing redirect */ - -
fdefine PRC TIMXCEED INTRANS - - 17 /* packet lifetime expired i
fdefine PRC TIMXCEED REASS 18 /* lifetime expired on reass - -
fdefine PRC P ARAMPROB 19 /* header incorrect */

while the info parameter is a '~catchall" value which is request dependent. Many
of the requests have obviously been derived from ICMP (the Internet Control
Message Protocol), and from error messages defined in the 1822 hostllMP con­
vention [BBN78]. Mapping tables exist to convert control requests to UNIX error
codes which are delivered to a user.

This routine is not currently used by any protocol modules.

~\sun ~~ microsystems
Revision B of 17 February 198(

6

ProtocollN etwork -Interface Interface

Protocol/N etwork -Interface Interface ... 33

6.1. Packet Transmission .. 33

6.2. Packet Reception ... 33

6.1. Packet Transmission

6.2. Packet Reception

6

Protocol/N etwork -Interface Interface

The lowest layer in the set of protocols which comprise a protocol family must
interface itself to one or more network interfaces in order to transmit and receive
packets. It is assumed that any routing decisions have been made before handing
a packet to a network interface, in fact this is absolutely necessary in order to
locate any interface at all (unless, of course, one uses a single' 'hardwired" inter­
face). There are two cases to be concerned with, transmission of a packet, and
receipt of a packet; each will be considered separately.

Assuming a protocol has a handle on an interface, ifp, a (struct ifnet *), it
transmits a fully formatted packet with the following call,

error = (*ifp->if_output) (ifp, m, dst)
int error;
struct ifnet *ifp;
struct mbuf *m;
struct sockaddr *dst;

The output routine for the network interface transmits the packet m to the dst
address, or returns an error indication (a UNIX error number). In reality transmis­
sion may not be immediate, or successful; nonnally the output routine simply
queues the packet on its send queue and primes an interrupt driven routine to
actually transmit the packet. For unreliable mediums, such as the Ethernet,
"successful" transmission simply means the packet has been placed on the cable
without a collision. On the other hand, an 1822 interface guarantees proper
delivery or an error indication for each message transmitted. The model
employed in the networking system attaches no promises of delivery to the pack­
ets handed to a network interface, and thus corresponds more closely to the Eth­
ernet. Errors returned by the output routine are normally trivial in nature (no
buffer space, address format not handled, etc.).

Each protocol family must have one or more "lowest level" protocols. These
protocols deal with internetwork addressing and are responsible for the delivery
of incoming packets to the proper protocol processing modules. In the PUP
model [Boggs78] these protocols are termed Level 1 protocols, in the ISO model,
network layer protocols. In our system each such protocol module has an input
packet queue assigned to it. Incoming packets received by a network interface
are queued up for the protocol module and a software interrupt is posted to ini­
tiate processing.

33 Revision B of 17 February 1986

34 Network Implementation

Three macros are available for queueing and dequeueing packets,

IF _ ENQUEUE(ifq, m)
This places the packet m at the tail of the queue ifq.

IF _ DEQUEUE(ifq, m)
This places a pointer to the packet at the head of queue ifq in m. A zero
value will be returned in m if the queue is empty.

IF _ PREPEND(ifq, m)
This places the packet m at the head of the queue ifq.

Each queue has a maximum length associated with it as a simple fonn of conges­
tion control. The macro IF _ QFVLL(ifq) returns 1 if the queue is filled, in which
case the macro IF _ DROP(ifq) should be used to bump a count of the number of
packets dropped and the offending packet dropped. For example, the following
code fragment is commonly found in a network interface's input routine,

if (IF_QFULL(inq»
IF_DROP (inq) ;
m_freem (m) ;

else
IF_ENQUEUE (inq,

~\Slln ,~ microsystems

m) ;

Revision B of 17 February 1986

7
Gateways and Routing Issues

Gateways and Routing Issues .. 37

7.1. Routing Tables .. 37

7.2. Routing Table Interface ... 39

7.3. User-Level Routing Policies ... 39

7.1. Routing Tables

7
Gateways and Routing Issues

The system has been designed with the expectation that it will be used in an
internetwork environment. The" canonical" environment was envisioned to be
a collection of local area networks connected at one or more points through hosts
with multiple network interfaces (one on each local area network), and possibly a
connection to a long haul network (for example, the ARPANET). In such an
environment, issues of gatewaying and packet routing become very important.
Certain of these issues, such as congestion control, have been handled in a
simplistic manner or specifically not addressed. Instead, where possible, the net­
work system attempts to provide simple mechanisms upon which more involved
policies may be implemented. As some of these problems become better under­
stood, the solutions developed will be incorporated into the system.

This section will describe the facilities provided for packet routing. The simplis­
tic mechanisms provided for congestion control are described in chapter 12.

The network system maintains a set of routing tables for selecting a network
interface to use in delivering a packet to its destination. These tables are of the
form:

struct itentry {
u_long rt_hashi /* hash key for lookups */
struct sockaddr rt_dsti /* destination net or host */
struct sockaddr rt_gatewaYi/* forwarding agent */
short rt_flagsi /* see below */
short rt_refcnti /* no. of references to structl
u_long rt_use; /* packets sent using route */
struct ifnet *rt_ifp; /* interface to give packet to

} i

The routing information is organized in two separate tables, one for routes to a
host and one for routes to a network. The distinction between hosts and networks
is necessary so that a single mechanism may be used for both broadcast and
multi-drop type networks, and also for networks built from point-to-point links
(e.g DECnet [DEC80n.

Each table is organized as a hashed set of linked lists. Two 32-bit hash values
are calculated by routines defined for each address family; one based on the des­
tination being a host, and one assuming the target is the network portion of the
address. Each hash value is used to locate a hash chain to search (by taking the
value modulo the hash table size) and the entire 32-bit value is then used as a key

37 Revision B of 17 February 1986

38 Network: Implementation

in scanning the list of routes. Lookups are applied first to the routing table for
hosts, then to the routing table for networks. If both lookups fail, a final lookup
is made for a "wildcard" route (by convention, network 0). By doing this,
routes to a specific host on a network may be present as well as routes to the net­
work. This also allows a "fall back" network route to be defined to an u smart"
gateway which may then perform more intelligent routing.

Each routing table entry contains a destination (who's at the other end of the
route), a gateway to send the packet to, and various flags which indicate the
route's status and type (host or network). A count of the number of packets sent
using the route is kept for use in deciding between multiple routes to the same
destination (see below), and a count of "held references" to the dynamically
allocated structure is maintained to insure memory reclamation occurs only when
the route is not in use. Finally a pointer to the a network interface is kept; pack­
ets sent using the route should be handed to this interface.

Routes are typed in two ways: either as host or network, and as "direct" or
, 'indirect". The hostlnetwork distinction detennines how to compare the rt _ dst
field during lookup. If the route is to a network, only a packet's destination net­
work is compared to the rt _ dst entry stored in the table. If the route is to a host,
the addresses must match bit for bit.

The distinction between "direct" and "indirect" routes indicates whether the
destination is directly connected to the source. This is needed when perfonning
local network encapsulation. If a packet is destined for a peer at a host or net­
work which is not directly connected to the source, the internetwork packet
header will indicate the address of the eventual destination, while the local net­
work header will indicate the address of the intervening gateway. Should the
destination be directly connected, these addresses are likely to be identical, or a
mapping between the two exists. The RTF _ GATEW A Y flag indicates the route
is to an "indirect" gateway agent and the local network header should be filled
in from the rt -.Kateway field instead of rt _ dst, or from the internetwork destina­
tion address.

It is assumed multiple routes to the same destination will not be present unless
they are deemed equal in cost (the current routing policy process never installs
multiple routes to the same destination). However, should multiple routes to the
same destination exist, a request for a route will return the "least used" route
based on the total number of packets sent along this route. This can result in a
"ping-pong" effect (alternate packets taking alternate routes), unless protocols
"hold onto" routes until they no longer find them useful; either because the des­
tination has changed, or because the route is lossy.

Routing redirect control messages are used to dynamically modify existing rout­
ing table entries as well as dynamically create new routing table entries. On
hosts where exhaustive routing infonnation is too expensive to maintain (for
example, work stations), the combination of wildcard routing entries and routing
redirect messages can be used to provide a simple routing management scheme
without the use of a higher level policy process. Statistics are kept by the routing
table routines on the use of routing redirect messages and their affect on the rout­
ing tables. These statistics may be viewed using netstat(l).

Revision B of 17 February 1986

7.2. Routing Table Interface

7.3. User-Level Routing
Policies

Chapter 7 -Gateways and Routing Issues 39

Status information other than routing redirect control messages may be used in
the future, but at present they are ignored. Likewise, more intelligent "metrics"
may be used to describe routes in the future, possibly based on bandwidth and
monetary costs.

A protocol accesses the routing tables through three routines, one to allocate a
route, one to free a route, and one to process a routing redirect control message.
The routine rtalloc performs route allocation; it is called with a pointer to the fol­
lowing structure,

struct route {

} ;

struct rtentry *ro_rt;
struct sockaddr ro_dst;

The route returned is assumed "held" by the caller until disposed of with an
rtfree call. Protocols which implement virtual circuits, such as TCP, hold onto
routes for the duration of the circuit's lifetime, while connection-less protocols,
such as UDP, currently allocate and free routes on each transmission.

The routine rtredirect is called to process a routing redirect control message. It
is called with a destination address and the new gateway to that destination. If a
non-wildcard route exists to the destination, the gateway entry in the route is
modified to point at the new gateway supplied. Otherwise, a new routing table
entry is inserted reflecting the information supplied. Routes to interfaces and
routes to gateways which are not directly accesible from the host are ignored.

Routing policies implemented in user processes manipulate the kernel routing
tables through two ioctl calls. The commands SIOCADDRT and SIOCDELRT
add and delete routing entries, respectively; the tables are read through the
/dev/kroem device. The decision to place policy decisions in a user process
implies routing table updates may lag a bit behind the identification of new
routes, or the failure of existing routes, but this period of instability is normally
very small with proper implementation of the routing process. Advisory infor­
mation, such as ICMP error messages and IMP diagnostic messages, may be read
from raw sockets (described in the next section).

One routing policy process has already been implemented. The system standard
"routing daemon" uses a variant of the Xerox NS Routing Information Protocol
[Xerox82] to maintain up to date routing tables in our local environment.
Interaction with other existing routing protocols, such as the Internet GGP
(Gateway-Gateway Protocol), may be accomplished using a similar process.

Revision B of 17 February 1986

8
Raw Sockets

Raw Sockets ... 43

8.1. Control Blocks .. 43

8.2. Input Processing ... 44

8.3. Output Processing ... 44

tl. Control Blocks

8
Raw Sockets

A raw socket is a mechanism which allows users direct access to a lower level
protocol. Raw sockets are intended for knowledgeable processes which wish to
take advantage of some protocol feature not directly accessible through the nor­
mal interface, or for the development of new protocols built atop existing lower
level protocols. For example, a new version of TCP might be developed at the
user level by utilizing a raw IP socket for delivery of packets. The raw IP socket
interface attempts to provide an identical interface to the one a protocol would
have if it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, and (possi­
bly) augmented by protocol-specific processing routines. This section will
describe the core of the raw socket interface.

Every raw socket has a protocol control block of the following form,

struct rawcb {

} ;

struct rawcb *rcb_next; /* doubly linked list */
struct rawcb *rcb-prev;
struct socket *rcb_socket; /* back pointer to socket */
struct sockaddr rcb_faddr; /* destination address */
struct sockaddr rcb_laddr; /* socket's address */
caddr t rcb-pcb; /* protocol specific stuff */
short rcb_flags;

All the control blocks are kept on a doubly linked list for performing lookups
during packet dispatch. Associations may be recorded in the control block and
used by the output routine in preparing packets for transmission. The addresses
are also used to filter packets on input; this will be described in more detail
shortly. If any protocol specific information is required, it may be attached to the
control block using the reb yeb field.

A raw socket interface is datagram oriented. That is, each send or receive on the
socket requires a destination address. This address may be supplied by the user
or stored in the control block and automatically installed in ~e outgoing packet
by the output routine. Since it is not possible to determine whether an address is
present or not in the control block, two flags, RA W _ LADDR and
RAW _FADDR, indicate if a local and foreign address are present. Another flag,
RA W _ DONTROUTE, indicates if routing should be performed on outgoing
packets. If it is, a route is expected to be allocated for each "new" destination

~~sun ~ microsystems
43 Revision B of 17 February 1986

44 Network Implementation

8.2. Input Processing

8.3. Output Processing

address. That is, the first time a packet is transmitted a route is determined, and
thereafter each time the destination address stored in reb route differs from
reb Jaddr, or reb _route.ro _rt is zero, the old route is discarded and a new one
allocated.

Input packets are "assigned" to raw sockets based on a simple pattern matching
scheme. Each network interface or protocol gives packets to the raw input rou­
tine with the call:

raw_input(m, proto, src, dst)
struct mbuf *m;
struct sockproto *proto, struct sockaddr *src, *dst;

The data packet then has a generic header prepended to it of the form

struct raw_header {

} ;

struct
struct
struct

sockproto raw-proto;
sockaddr raw_dst;
sockaddr raw_src;

and it is placed in a packet queue for the "raw input protocol" module. Packets
taken from this queue are copied into any raw sockets that match the header
according to the following rules,

1. The protocol family of the socket and header agree.

2. If the protocol number in the socket is non-zero, then it agrees with that
found in the packet header.

3. If a local address is defined for the socket, the address format of the local
address is the same as the destination address's and the two addresses agree
bit for bit.

4. The rules of3) are applied to the socket's foreign address and the packet's
source address.

A basic assumption is that addresses present in the control block and packet
header (as constructed by the network interface and any raw input protocol
module) are in a canonical form which may be "block compared" .

On output the raw pr _ usrreq routine passes the packet and raw control block to
the raw protocol output routine for any processing required before it is delivered
to the appropriate network interface. The output routine is normally the only
code required to implement a raw socket interface.

~\sun ~ microsystems
Revision B of 17 February 198

9

Buffering and Congestion Control

Buffering and Congestion Control .. 47

9.1. Memory Management ... 47

9.2. Protocol Buffering Policies .. 48

9.3. Queue Limiting ... 48

9.4. Packet Forwarding .. 48

9.1. Memory Management

9

Buffering and Congestion Control

One of the major factors in the performance of a protocol is the buffering policy
used. Lack of a proper buffering policy can force packets to be dropped, cause
falsified windowing information to be emitted by protocols, fragment host
memory, degrade the overall host performance, etc. Due to problems such as
these, most systems allocate a fixed pool of memory to the networking system
and impose a policy optimized for "normal" network operation.

The networking system developed for UNIX is little different in this respect. At
boot time a fixed amount of memory is allocated by the networking system. At
later times more system memory may be requested as the need arises, but at no
time is memory ever returned to the system. It is possible to garbage collect
memory from the network, but difficult. In order to perform this garbage collec­
tion properly, some portion of the network will have to be "turned off" as data
structures are updated. The interval over which this occurs must kept small com­
pared to the average inter-packet arrival time, or too much traffic may be lost,
impacting other hosts on the network, as well as increasing load on the intercon­
necting mediums. In our environment we have not experienced a need for such
compaction, and thus have left the problem unresolved.

The mbuf structure was introduced in chapter 5. In this section a brief descrip­
tion will be given of the allocation mechanisms, and policies used by the proto­
cols in performing connection level buffering.

The basic memory allocation routines place no restrictions on the amount of
space which may be allocated. Any request made is filled until the system
memory allocator starts refusing to allocate additional memory. When the
current quota of memory is insufficient to satisfy an mbuf allocation request, the
allocator requests enough new pages from the system to satisfy the current
request only. All memory owned by the network is described by a private page
table used in remapping pages to be logically contiguous as the need arises. In
addition, an array of reference counts parallels the page table and is used when
multiple copies of a page are present.

Mbufs are 128 byte structures, 16 fitting in a 2048 byte page of memory. When
data is placed in mbufs, if possible, it is copied or remapped into logically con­
tiguous pages of memory from the network page pool. Data smaller than the size
of a page is copied into one or more 112 byte mbuf data areas.

~\sun ~~ microsystems
47 Revision B of 17 February 1986

48 Network Implementation

9.2. Protocol Buffering
Policies

9.3. Queue Limiting

9.4. Packet Forwarding

Protocols reserve fixed amounts of buffering for send and receive queues at
socket creation time. These amounts define the high and low water marks used
by the socket routines in deciding when to block and unblock a process. The
reservation of space does not currently result in any action by the memory
management routines, though it is clear if one imposed an upper bound on the
total amount of physical memory allocated to the network, reserving memory
would become important.

Protocols which provide connection level flow control do this based on the
amount of space in the associated socket queues. That is, send windows are cal­
culated based on the amount of free space in the socket's receive queue, while
receive windows are adjusted based on the amount of data awaiting transmission
in the send queue. Care has been taken to avoid the "silly window syndrome"
described in [Clark82] at both the sending and receiving ends.

Incoming packets from the network are always received unless memory alloca­
tion fails. However, each Level 1 protocol input queue has an upper bound on
the queue's length, and any packets exceeding that bound are discarded. It is
possible for a host to be overwhelmed by excessive network traffic (for instance a
host acting as a gateway from a high bandwidth network to a low bandwidth net­
work). As a "defensive" mechanism the queue limits may be adjusted to throt­
tle network traffic load on a host. Consider a host willing to devote some percen­
tage of its machine to handling network traffic. If the cost of handling an incom­
ing packet can be calculated so that an acceptable "packet handling rate' , can be
determined, then input queue lengths may be dynamically adjusted based on a
host's network load and the number of packets awaiting processing. Obviously,
discarding packets is not a satisfactory solution to a problem such as this (simply
dropping packets is likely to increase the load on a network); the queue lengths
were incorporated mainly as a safeguard mechanism.

When packets can not be forwarded because of memory limitations, the system
generates a "source quench" message. In addition, any other problems encoun­
tered during packet forwarding are also reflected back to the sender in the form of
ICMP packets. This helps hosts avoid unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an
early stage of network development, broadcast packets were forwarded and a
"routing loop" resulted in network saturation and every host on the network
crashing.

Revision B of 17 February 1986

10
Out of Band Data

Out of Band Data .. 51

10
Out of Band Data

Out of band data is a facility peculiar to the stream socket abstraction defined.
Little agreement appears to exist as to what its semantics should be. TCP defines
the notion of "urgent data" as in-line, while the NBS protocols [Burruss81] and
numerous others provide a fully independent logical transmission channel along
which out of band data is to be sent. In addition, the amount of the data which
may be sent as an out of band message varies from protocol to protocol; every­
thing from 1 bit to 16 bytes or more.

A stream socket's notion of out of band data has been defined as the lowest rea­
sonable common denominator (at least reasonable in our minds); clearly this is
subject to debate. Out of band data is expected to be transmitted out of the nor­
mal sequencing and flow control constraints of the data stream. A minimum of 1
byte of out of band data and one outstanding out of band message are expected to
be supported by the protocol supporting a stream socket. It is a protocols prero­
gative to support larger sized messages, or more than one outstanding out of band
message at a time.

Out of band data is maintained by the protocol and usually not stored in the
socket's send queue. The PRU _ SENDOOB and PRU _ RCVOOB requests to the
pr _usrreq routine are used in sending and receiving data.

51 Revision B of 17 February 1986

A
Acknow ledgements and References

Acknowledgements and References .. 55

A.i. References .. 55

A.I. References

A
Acknowledgements and References

The internal structure of the system is patterned after the Xerox PUP architecture
[Boggs79], while in certain places the Internet protocol family has had a great
deal of influence in the design. The use of software interrupts for process invoca­
tion is based on similar facilities found in the VMS operating system. Many of
the ideas related to protocol modularity, memory management, and network
interfaces are based on Rob GUlWitz's TCP/IP implementation for the 4.1BSD
version of UNIX on the VAX [GulWitz81].

[Boggs79]

[BBN78]

[Cert78]

[Clark82]

[DEC80]

[Gurwitz81]

[lS081]

[Joy82a]

~\sun ,~ microsysterTlS

Boggs, D. R., J. F. Shoch, E. A. Taft, and R. M.
Metcalfe; PUP: An Internetwork Architecture. Report
CSL-79-10. XEROX Palo Alto Research Center, july
1979.

Bolt Beranek and Newman; Specification/or the Inter­
connection of Host and IMP. BBN Technical Report
1822. May 1978.

Cerf, V. G.; The Catenet Model for Intemetworking.
Internet Working Group, lEN 48. July 1978.

Clark, D. D.; Window and Acknowledgement Strategy
in TCP. Internet Working Group, lEN Draft Clark -2.
March 1982.

Digital Equipment Corporation; DEGnet DIGITAL Net­
work Architecture - General Description. Order No.
AA-KI79A-TK. October 1980.

Gurwitz, R. F.; VAX-UNIX Networking Support Pro­
ject - Implementation Description. Internetwork Work­
ing Group, lEN 168. January 1981.

International Organization for Standardization. ISO
Open Systems Interconnection - Basic Reference
Model. Isorrc 97/SC 16 N 719. August 1981.

Joy, W.; Cooper, E.; Fabry, R.; Leffler, S.; and
McKusick, M.; System Interface Overview. Computer
Systems Research Group, Technical Report 5. Univer­
sity of California, Berkeley. Draft of September 1,

55 Revision B of 17 February 1986

56 Network Implementation

[posteI79]

[posteI80a]

[posteI80b]

[Xerox81]

[Zimmermann80]

~\sun ,~ microsystems

1982.

Postel, J., ed. DOD Standard User Datagram Protocol.
Internet Working Group, lEN 88. May 1979.

Postel, J., ed. DOD Standard Internet Protocol. Inter­
net Working Group, lEN 128. January 1980.

Postel, J., ed. DOD Standard Transmission Control
Protocol. Internet Working Group, lEN 129. January
1980.

Xerox Corporation. Internet Transport Protocols.
Xerox System Integration Standard 028112. December
1981.

Zimmermann, H. OSI Reference Model - The ISO
Model of Architecture for Open Systems Interconnec­
tion. IEEE Transactions on Communications. Com-
28(4); 425-432. April 1980.

Revision B of 17 February 198f

Revision History

Rev Date Comments

I-a. 19 November 1984 Alpha release of this manual, with mostly new material.

51-~ 1 February 1985 Beta release of this manual, with minor revisions.
A 15 April 1985 First release of this manual, for customer shipment.

2-a. 6 August 1985 Second alpha release of this manual, in the new look.
52-~ 11 October 1985 Second beta release of this manual, in the new look.

B 17 February 1985 Second release of this manual, for customer shipment.

Notes

